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PREFACE 
 
The following is the Eighth Annual Progress Report, Identification of the Instream Flow 
Requirements for Anadromous Fish in the Streams within the Central Valley of California and 
Fisheries Investigations, prepared as part of the Central Valley Project Improvement Act 
(CVPIA) Instream Flow and Fisheries Investigations, an effort which began in October, 2001.1  
Title 34, Section 3406(b)(1)(B) of the Central Valley Project Improvement Act, P.L. 102-575, 
requires the Secretary of the Department of the Interior to determine instream flow needs for 
anadromous fish for all Central Valley Project controlled streams and rivers, based on 
recommendations of the U.S. Fish and Wildlife Service (Service) after consultation with the 
California Department of Fish and Game (CDFG).  The purposes of this investigation are:  1) to 
provide scientific information to the Service’s Central Valley Project Improvement Act Program 
to be used to develop such recommendations for Central Valley streams and rivers; and 2) to 
provide scientific information to other CVPIA programs to use in assessing fisheries restoration 
actions.    
 
The field work described herein was conducted by Ed Ballard, Mark Gard, Bill Pelle, Kevin 
Aceituno, Jeremy Redding, Rick Williams, Jacob Cunha, Brenda Olson, Tricia Bratcher, Robert 
Hughes, Steve Thomas and Josh Gruber. 
 
Written comments or questions can be submitted to: 
 
 
 
 
 Mark Gard, Senior Biologist 
 Energy Planning and Instream Flow Branch 
 U.S. Fish and Wildlife Service 
 Sacramento Fish and Wildlife Office 
 2800 Cottage Way, Room W-2605 
 Sacramento, California  95825 
 

Mark_Gard@fws.gov 

                                                 

 1 The scope of this program was broadened in FY 2009 to include fisheries 
investigations.  This program is a continuation of a 7-year effort, titled the Central Valley Project 
Improvement Act Instream Flow Investigations, which ran from February 1995 through 
September 2001. 
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INTRODUCTION 
   
In response to substantial declines in anadromous fish populations, the Central Valley Project 
Improvement Act provided for enactment of all reasonable efforts to double sustainable natural 
production of anadromous fish stocks including the four races of Chinook salmon (fall, late-fall, 
winter, and spring), steelhead trout, white and green sturgeon, American shad and striped bass.  
In June 2001, the Service’s Sacramento Fish and Wildlife Office, Energy Planning and Instream 
Flow Branch prepared a study proposal to use the Service's Instream Flow Incremental 
Methodology (IFIM) to identify the instream flow requirements for anadromous fish in selected 
streams within the Central Valley of California.  The proposal included completing instream 
flow studies on the Sacramento and Lower American Rivers and Butte Creek which had begun 
under the previous 7-year effort, and conducting instream flow studies on other rivers, with the 
Yuba River selected as the next river for studies.  The last report for the Lower American River 
study was completed in February 2003, the final report for the Butte Creek study was completed 
in September 2003, and the last two reports for the Sacramento River were completed in 
December 2006.  In 2004, Clear Creek was selected as an additional river for studies.  In 2007, 
the Tuolumne River was selected for a minor project to quantify floodplain inundation area as a 
function of flow.  In 2008, South Cow Creek was selected as an additional river for studies.  In 
2009, the following fisheries investigation tasks were selected for study:  1) Re-examine Clear 
Creek data on adult Spring Chinook – is the increase in Weighted Useable Area due to an 
increase in quality or is it an increase in area; 2) Clear Creek Biovalidation – how well does 
IFIM compare to field observations; 3) Sacramento River tributaries flow and temperature 
monitoring; 4) Stanislaus River floodplain area versus flow; and 5) Red Bluff Diversion Dam 
Interim Pumping Plant screen hydraulic evaluation. 
 
The Yuba River study was planned to be a 4-year effort, beginning in September 2001.  The 
goals of the study are to determine the relationship between stream flow and physical habitat 
availability for all life stages of Chinook salmon (fall- and spring-runs) and steelhead/rainbow 
trout and to determine the relationship between streamflow and redd dewatering and juvenile 
stranding.  Collection of spawning and juvenile rearing criteria data for fall- and spring-run 
Chinook salmon and steelhead/rainbow trout was completed by, April 2004 and September 2005, 
respectively.  Field work to determine the relationship between habitat availability for spawning 
and juvenile rearing and streamflow for spring-run and fall-run Chinook salmon and 
steelhead/rainbow trout was completed in, FY 2005 and FY 2007, respectively.  A draft 
spawning report was completed in FY 2007 and draft rearing and redd dewatering/juvenile 
stranding reports were completed in FY 2008.  In FY 2008, we completed the response-to-
comments document for the peer review of the spawning study report and revisions to the draft 
spawning study report stemming from the peer review, and conducted a series of stakeholder 
meetings to discuss stakeholder comments2 regarding the draft spawning report.  In FY 2009, we 
completed a sensitivity analysis to further respond to concerns raised at those meetings, 
completed a response-to-comments document for the stakeholder review of the spawning study 
report and revisions to the draft spawning report stemming from the stakeholder review, and 
                                                 

2   Stakeholder review for the Yuba reports was agreed upon during scoping meetings 
prior to commencement of the studies.   
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conducted a stakeholder review and started a peer review of the juvenile rearing and redd 
dewatering/juvenile stranding reports.  The remaining work on the Yuba reports is ongoing and 
will be completed in FY 2010. 
 
The Clear Creek study was planned to be a 5-year effort, beginning in October 2003.  The goals 
of the study are to determine the relationship between stream flow and physical habitat 
availability for all life stages of Chinook salmon (fall- and spring-run) and steelhead/rainbow 
trout.  There are four phases to this study based on the life stages to be studied and the number of 
segments delineated for Clear Creek from downstream of Whiskeytown Reservoir to the 
confluence with the Sacramento River3.  The four phases are:  1) spawning in the upper two 
segments; 2) fry and juvenile rearing in the upper two segments; 3) spawning in the lower 
segment; and 4) fry and juvenile rearing in the lower segment.  Field work for the above four 
phases was completed in, FY 2005, FY 2007, FY 2008 and FY 2009, respectively.  In FY 2007 
the final report and the peer review response-to-comments document for spawning in the upper 
two segments was completed.  A draft report on the five spawning sites in the lower segment was 
completed in FY 2009 and sent off for stakeholder review.  We are currently making 
arrangements for peer review of that report.  In FY 2009, we completed construction of the 2D 
hydraulic models for four of the five lower segment rearing sites.  We are currently awaiting 
flow data from Graham Matthew and Associates consulting firm needed to calibrate and conduct 
the production runs for those models.  We are also still waiting to receive additional bed 
topography data on study site 3B in the lower segment from Graham Matthews and Associates.  
The remaining work on the Clear Creek reports will be completed in FY 2010. 
 
The South Cow Creek study was planned to be a 5-year effort and began in October 2008 with 
habitat mapping and collection of spawning habitat suitability data for fall-run Chinook salmon.  
Fieldwork was completed on one site and started on an additional three sites to determine the 
relationship between stream flow and physical habitat availability for fry and juvenile rearing 
fall-run Chinook salmon in FY 2009.  Due to funding cuts, the South Cow Creek study will be 
completed in FY 2010 with completion of fieldwork on the three juvenile sites, redd mapping, 
and preparation of a final report on habitat quantity and quality in South Cow Creek. 
 
For the fisheries investigations tasks, the task “Re-examine Clear Creek data on adult Spring 
Chinook – is the increase in Weighted Useable Area due to an increase in quality or is it an 
increase in area” was completed in FY 2009, as was fieldwork for the task “Clear Creek 
Biovalidation – how well does IFIM compare to field observations.”  The latter task will be 
completed in FY 2010.  We began fieldwork for the Sacramento River tributaries flow and 
temperature monitoring task in FY 2009; due to lack of funding, this task will be continued by 
the Anadromous Fish Restoration Program Habitat Restoration Coordinators in FY 2010.  We 
were unable to conduct the Stanislaus River floodplain area versus flow task because a U.S. 
                                                 

 3  There are three segments:  the upper alluvial segment, the canyon segment, and the 
lower alluvial segment.  Spring-run Chinook salmon spawn in the upper two segments, while 
fall-run Chinook salmon spawn in the lower segment and steelhead/rainbow trout spawn in all 
three segments. 
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Bureau of Reclamation hydraulic model of the Stanislaus River, that would have been used to 
conduct this task, was not completed in FY 2009.  This task will not be conducted in FY 2010 
due to lack of funding.  In collaboration with the CDFG and the National Marine Fisheries 
Service, we conducted an initial hydraulic evaluation of the Red Bluff Interim Pumping Plant 
screens on June 1-12, 2009, and plan to conduct an additional three hydraulic evaluations in FY 
2010 at a range of Sacramento River flows and pumping levels. 
 
The following sections summarize project activities between October 2008 and September 2009. 

 
YUBA RIVER 

 
Habitat Simulation 

 
Chinook salmon and steelhead/rainbow trout spawning 
 
A draft report and response to peer review comments document was completed in FY 2007.  In 
FY 2007, we sent out the draft report to interested parties for review and comment prior to 
finalizing the report.  This review by interested parties was in response to commitments made by 
the Service during the initial planning meetings with those interested parties.  This is the first of 
the CVPIA instream flow reports to be reviewed in this manner.  In FY 2008 and 2009, we 
conducted a series of meetings with stakeholders regarding the draft report.  In response to 
comments received at these meetings, we completed in FY 2009 a habitat modeling and 
biological verification sensitivity analysis to address these comments.  The sensitivity analysis 
included different methods for developing criteria (density-based criteria), different methods of 
calculating habitat (geometric mean), and alternative criteria (specifically steelhead/rainbow 
trout spawning criteria that we developed on Clear Creek).  In FY 2009, we completed a 
response-to-comments document for the stakeholder review of the spawning study report and 
revisions to the draft spawning report stemming from the stakeholder review.  With a second 
peer review upcoming, a final report on flow-habitat relationships for spawning and the 
response-to-comments document will be completed in FY 2010.     
 
Juvenile Chinook salmon and steelhead/rainbow trout rearing  
 
Computation of spring/fall-run Chinook salmon and steelhead/rainbow trout fry and juvenile 
rearing habitat over a range of discharges in was completed for all juvenile rearing sites in FY 
2008.  The draft report was completed in FY 2008.  We sent this draft report out for concurrent 
stakeholder and peer review in FY 2009.  Peer review, response-to-comments document and a 
final report on flow-habitat relationships for rearing will be completed by September 2010. 
 
Chinook salmon and steelhead/rainbow trout juvenile stranding and redd dewatering 
 
A draft report was completed in FY 2008.  We sent this draft report out for concurrent 
stakeholder and peer review in FY 2009.  We will complete the final report in FY 2010.   
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CLEAR CREEK 
 

Hydraulic and Structural Data Collection 
 
Juvenile fall-run Chinook salmon and steelhead/rainbow trout rearing (Lower Alluvial 
Segment) 
 
During FY 2008, we completed all the data collection for the Side Channel Run/Pool, North 
State Riffle, and 3B sites.  In FY 2009, we completed the remaining bed topography data 
collection in the Tarzan Pool site, tied together the vertical benchmarks and collected the 50 
validation velocity data points for that site.   We then collected the bed topography data, tied 
together the vertical benchmarks and collected the 50 validation velocity data points for ACID 
Glide site. We also collected medium and high flow water surface elevations for all five lower 
rearing sites. Data collection for the five study sites was completed by April 2009. We are still 
awaiting some additional bed topography data for the 3B study site from Graham Matthews and 
Associates. 
 

Hydraulic Model Construction and Calibration 
 
Fall-run Chinook salmon and steelhead/rainbow trout spawning (Lower Alluvial Segment) 
 
All data have been compiled and checked, and hydraulic model construction and calibration was 
completed on all five study sites in FY 2008.  We completed the productions runs for all five 
study sites in early FY 2009.  
 
Fall-run Chinook salmon and steelhead/rainbow trout rearing (Lower Alluvial Segment) 
 
All data collected in FY 2008 for the four study sites has been entered into spreadsheets.  We 
completed hydraulic model construction for four of the five study sites (with the exception of 
3B) in FY 2009.   The hydraulic model construction for site 3B has been postponed until FY 
2010, while we wait for additional bed topography data from Graham Matthews and Associates.  
We plan on conducting the calibration and production runs for the five study sites in FY 2010 
after we receive needed flow data from Graham Matthews and Associates. 

 
Habitat Suitability Criteria (HSC) Development 

 
Juvenile spring-run Chinook salmon and steelhead/rainbow trout rearing (Upper Alluvial and 
Canyon Segments) 
 
Staff of the Red Bluff Fish and Wildlife Office have been conducting snorkeling surveys 
specifically to collect rearing HSC for juvenile spring-run Chinook salmon and 
steelhead/rainbow trout in the Upper Alluvial and Canyon segments.  The collection of Young of 
Year (YOY) spring-run Chinook salmon and steelhead/rainbow trout (fry and juveniles) rearing 
HSC data began at the end of FY 2004 with surveys conducted on the dates in Table 1.  Snorkel 
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surveys were conducted along the banks and in the middle of the channel.  Depth, velocity, 
adjacent velocity4 and cover data were also collected on locations which were not occupied by 
YOY spring-run Chinook salmon and steelhead/rainbow trout (unoccupied locations).  This was 
done so that we could apply a method presented in Guay et al. (2000) to explicitly take into 
account habitat availability in developing HSC criteria, without using preference ratios (use 
divided by availability).  Traditionally, criteria are created from observations of fish use by 
fitting a nonlinear function to the frequency of habitat use for each variable (depth, velocity, 
cover, adjacent velocity).  One concern with this technique is what effect the availability of 
habitat has on the observed frequency of habitat use.  For example, if cover is relatively rare in a 
stream, fish will be found primarily not using cover simply because of the rarity of cover, rather 
than because they are selecting areas without cover.  Guay et al. (2000) proposed a modification 
of the above technique where habitat suitability criteria data are collected both in locations where 
fish are present and in locations where fish are absent.  Criteria are then developed by using a 
logistic regression with presence or absence of fish as the dependent variable and depth, velocity, 
cover and adjacent velocity as the independent variables, and all of the data (in both occupied 
and unoccupied locations) are used in the regression.   
 
Before going out into the field, a data book was prepared with one line for each unoccupied 
location where depth, velocity, cover and adjacent velocity would be measured.  Each line had a 
distance from the bank, with a range of 0.5 to 10 feet by 0.5 foot increments, with the values 
produced by a random number generator.  In areas that could be sampled up to 20 feet from the 
bank, the above distances were doubled. 
 
When conducting snorkel surveys adjacent to the bank, one person snorkeled upstream along the 
bank and placed a weighted, numbered tag at each location where YOY spring-run Chinook 
salmon or steelhead/rainbow trout were observed.  The snorkeler recorded the tag number, the 
species, the cover code5 and the number of individuals observed in each 10-20 mm size class on 
a Poly Vinyl Chloride (PVC) wrist cuff.  If one person was snorkeling per habitat unit, the side 
of the creek to be snorkeled would alternate with each habitat unit and would also include 
                                                 
 4 The adjacent velocity was measured within 2 feet on either side of the location where 
the velocity was the highest.  Two feet was selected based on a mechanism of turbulent mixing 
transporting invertebrate drift from fast-water areas to adjacent slow-water areas where fry and 
juvenile salmon and steelhead/rainbow trout reside, taking into account that the size of turbulent 
eddies is approximately one-half of the mean river depth (Terry Waddle, USGS, personal 
communication), and assuming that the mean depth of Clear Creek is around 4 feet (i.e., 4  feet x 
½ = 2 feet).  This measurement was taken to provide the option of using an alternative habitat 
model which considers adjacent velocities in assessing habitat quality.  Adjacent velocity can be 
an important habitat variable as fish, particularly fry and juveniles, frequently reside in slow-
water habitats adjacent to faster water where invertebrate drift is conveyed.  Both the residence 
and adjacent velocity variables are important for fish to minimize the energy expenditure/food 
intake ratio and maintain growth. 

 5 If there was no cover elements (as defined in Table 2) within 1 foot horizontally of the 
fish location, the cover code was 0.1 (no cover). 
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Table 1 
Spring-run Chinook Salmon and Steelhead/Rainbow Trout Juvenile HSC Data Collection 

 

  
Dates Average Igo6 Flows (cfs) 

September 24, 2004 213 

January 14, 21, and 26-27, 2005 283 

February 15, 2005 238 

April 6 and 20, 2005 250 

May 5, 11-13, 16, 23 and 26, 2005 264 

June 7, 10, 13 and 23-24, 2005 198 

July 28-29, 2005 154 

November 22, 2005 199 

December 7-8 and 14-16, 2005 216 

January 25-26, 2006 194 

February 10, 17 and 23, 2006 272 

March 9-10, 15-17, 20-21, 27 and 29, 2006 378 

April 6, 20-21, 24 and 26, 2006 333 

May 1, 5-6, 9-10, 16-17, 24-25 and 30-31, 2006 262 

June 6-7, 2006 136 

July 5 and 14, 2006 95 

August 8, 2006 89 

December 7, 15, 18-20 and 29, 2006 240 

January 5, 8, 10, 17-19, 25-26 and 30-31, 2007 217 

February 1, 5-7, 13-15, 21 and 27, 2007 261 

March 7, 2007 255 

April 3, 5, 10, 13, 17 and 26-27, 2007 235 

May 1, 11, 15-18 and 23-24, 2007 227 

June 7, 19 and 21, 2007 167 

July 10, 12 and 19-20, 2007 106 

January 16-17 and 30, 2008 253 

April 29-30, 2008 224 

 

                                                 
6 U.S. Geological Survey Gage Number 11372000 on Clear Creek near Igo, CA. 
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Table 2 
Cover Coding System 

 
 

Cover Category 
 

Cover Code 
 

No cover 
 

0 
 

Cobble 
 

1 
 

Boulder 
 

2 
 

Fine woody vegetation (< 1" diameter) 
 

3 

Fine woody vegetation + overhead 3.7 
 

Branches 
 

4 

Branches + overhead 4.7 
 

Log (> 1' diameter) 
 

5 

Log + overhead 5.7 
 

Overhead cover (> 2' above substrate) 
 

7 
 

Undercut bank 
 

8 
 

Aquatic vegetation 
 

9 

Aquatic vegetation + overhead 9.7 
 

Rip-rap 
 

10 

 
snorkeling the middle portion of some units.  As an example, the right bank was snorkeled for 
one habitat unit, the middle of the next habitat unit was then snorkeled, and then the left bank 
was snorkeled of the next habitat unit and then the process was repeated.7  The habitat units were 
snorkeled working upstream, which is generally the standard for snorkel surveys.  In some cases 
when snorkeling the middle of a habitat unit, the difficulty of snorkeling mid-channel required 
snorkeling downstream.  If three people were going to snorkel each unit, one person snorkeled 
along each bank working upstream, while the third person snorkeled downstream through the 
middle of the unit.  The distance to be snorkeled was delineated by laying out a tape along the 
bank as described previously for a distance of 150 feet or 300 feet.  The average and maximum 
distance from the water’s edge that was sampled, cover availability in the area sampled 
(percentage of the area with different cover types) and the length of bank sampled (measured 

                                                 

 7The Sacramento Fish and Wildlife Office Instream Flow Group designates left and right 
bank looking upstream. 
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with a 150 or 300-foot-long tape) was also recorded.  When three people were snorkeling, cover 
percentages were collected by each person snorkeling.  After completing each unit, the 
percentages for each person were combined and averaged.  The cover coding system used is 
shown in Table 2.  
 
A 150 or 300-foot-long tape was put out with one end at the location where the snorkeler 
finished and the other end where the snorkeler began.  Three people went up the tape, one with a 
stadia rod and data book and the other two with a wading rod and velocity meter.  At every 20-
foot interval along the tape, the person with the stadia rod measured out the distance from the 
bank given in the data book.  If there was a tag within 3 feet of the location, “tag within 3” was 
recorded on that line in the data book and the people proceeded to the next 20-foot mark on the 
tape, using the distance from the bank on the next line.  If the location was beyond the sampling 
distance, based on the information recorded by the snorkeler, “beyond sampling distance” was 
recorded on that line and the recorder went to the next line at that same location, repeating until 
reaching a line with a distance from the bank within the sampling distance.  If there was no tag 
within 3 feet of that location, one of the people with the wading rod measured the depth, 
velocity, adjacent velocity and cover at that location.  Depth was recorded to the nearest 0.1 foot 
and average water column velocity and adjacent velocity were recorded to the nearest 0.01 ft/s.  
Another individual retrieved the tags, measured the depth and mean water column velocity at the 
tag location, measured the adjacent velocity for the location, and recorded the data for each tag 
number.  Data taken by the snorkeler and the measurer were correlated at each tag location.  For 
the one-snorkeler surveys, the unoccupied data for the mid-channel snorkel surveys was 
collected by establishing the distance to be snorkeled by laying out the tape on a bank next to the 
distance of creek that was to be snorkeled.  After snorkeling that distance, the line snorkeled was 
followed down through the middle of the channel and the randomly selected distance at which 
the unoccupied data was to be collected was measured out toward the left or right bank, 
alternating with each 20 foot location along the tape.  For the three-snorkeler surveys, 
unoccupied data was collected for each habitat unit snorkeled in this manner by alternating left 
and right bank or mid-channel for each habitat unit snorkeled.  As an example, for the first 
habitat unit snorkeled, unoccupied data would be collected along the left bank.  At the next unit, 
data would be collected along the right bank.  At the next unit, the data would be collected as 
described previously using the mid-channel line snorkeled.  No HSC snorkel surveys were 
conducted in FY 2009. 
 
Results 
 
To date, there have been 214 observations of YOY spring-run Chinook salmon, and 566 
observations of YOY steelhead/rainbow trout (in this case the use of the term observations 
indicates when a sighting of one or more fish occurred).  An observation can include 
observations of fry (<60 mm in length) and observations of juveniles (>60 mm).  Of the 214 
YOY spring-run Chinook salmon observations, there have been 193 spring-run Chinook salmon 
observations of  <60 mm fish and 34 spring-run Chinook salmon observations of  >60 mm fish.   
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Of the 566 YOY steelhead/rainbow trout observations, there have been 279 steelhead/rainbow 
trout observations of  <60 mm fish and 314 steelhead/rainbow trout observations of  >60 mm 
fish.   
 
A total of 1,175 mesohabitat units have been surveyed to date.  A total of 156,741 feet of near-
bank habitat and 33,524 feet of mid-channel habitat have been sampled to date.  Table 3 
summarizes the number of feet of different mesohabitat types sampled to date and Table 4 
summarizes the number of feet of different cover types sampled to date.  We have developed two 
different groups of cover codes based on snorkel surveys we conducted on the Sacramento River:  
Cover Group 1 (cover codes 4 and 7 and composite [instream+overhead] cover), and Cover 
Group 0 (all other cover codes).  A total of 98,446 feet of Cover Group 0 and 56,029 feet of 
Cover Group 1 in near-bank habitat, and 32,509 feet of Cover Group 0 and 750 feet of Cover 
Group 1 in mid-channel habitat, have been sampled to date.  
 
Due to the need to complete all of the Clear Creek reports in FY10, no further YOY and juvenile 
spring-run Chinook salmon and steelhead/rainbow trout HSC data will be collected. 
 

Habitat Simulation 
 
Juvenile spring-run Chinook salmon and steelhead/rainbow trout rearing (Upper Alluvial and 
Canyon Segments) 
 
Spring-run Chinook salmon and steelhead/rainbow trout rearing habitat will be computed over a 
range of discharges for the six spawning sites and six rearing sites in the Upper Alluvial and 
Canyon segments.  Completion of this phase of the study will occur in FY 2010, due to the lack 
of funds for further snorkeling surveys to collect additional HSC data.  Given the small number 
of observations of juvenile spring-run Chinook salmon gathered to date, it may be necessary to 
utilize the Clear Creek fall-run Chinook salmon juvenile criteria to be developed, spring-run 
Chinook salmon juvenile rearing HSC data from another creek or river with characteristics 
similar to Clear Creek, or conduct transferability tests using Clear Creek fall-run HSC or spring-
run rearing HSC from another creek or river.  The draft report was partially completed in FY 
2009.  We will complete draft and final reports on the 2-D modeling of the spring-run Chinook 
salmon and steelhead/rainbow trout rearing in the Upper Alluvial and Canyon segments in FY 
2010.  The Red Bluff Fish and Wildlife Office has requested that a draft report be distributed to 
interested parties for comment in addition to peer review, as is being done with the Yuba River 
Study reports.   
 
Fall-run Chinook salmon and steelhead/rainbow trout spawning (Lower Alluvial Segment) 
 
We completed the hydraulic model production runs for all five study sites over the range of 
simulation discharges, computed fall-run Chinook salmon and steelhead/rainbow trout spawning 
habitat over a range of discharges for the five spawning sites and completed a draft report in FY 
2009.  A peer review and final report will be completed in FY 2010. 
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Table 3 
 Distances Sampled for YOY Spring-run Chinook Salmon and  

Steelhead/Rainbow Trout HSC Data - Mesohabitat Types 

   

   
Mesohabitat Type Near-bank habitat distance sampled (ft) Mid-channel habitat distance sampled (ft) 

Main Channel Glide 4,071 744 

Main Channel Pool 66,804 12,993 

Main Channel Riffle 31,292 7,011 

Main Channel Run 52,065 10,395 

Side Channel Glide  0 550 

Side Channel Pool 1,180 520 

Side Channel Riffle 200 365 

Side Channel Run 0 664 

Cascade 1,129 282 

 
Table 4 

Distances Sampled for YOY Spring-run Chinook Salmon and 
Steelhead/Rainbow Trout HSC Data - Cover Types 

 

   
Cover Type Near-bank habitat distance sampled (ft) Mid-channel habitat distance sampled (ft) 

None 48,623 18,372 

Cobble 14,901 8,763 

Boulder 7,835 4,558 

Fine Woody 48,153 465 

Branches 23,518 376 

Log 1,700 38 

Overhead 1,461 26 

Undercut 3,049 73 

Aquatic Vegetation 5,115 616 

Rip Rap 0 0 

Overhead + instream 45,101 611 
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Fall-run Chinook salmon and steelhead/rainbow trout rearing (Lower Alluvial Segment) 
 
We will complete the hydraulic model production runs for all five study sites over the range of 
simulation discharges, compute fall-run Chinook salmon and steelhead/rainbow trout rearing 
habitat over a range of discharges for the five spawning sites and five rearing sites and issue draft 
and final reports in FY 2010. 
 

SOUTH COW CREEK 
 

Habitat Mapping 
 

Juvenile fall-run Chinook salmon rearing 
 

Mesohabitat mapping of South Cow Creek was conducted October 27-30, 2008, November 24-
26, 2008, and April 16, 2009.  There were three portions of the creek that were mesohabitat 
typed.  These three sections were the Boero Reach, Valley Floor Reach, and the Tetrick Reach.  
The combined distance for these three reaches was 7.36 miles.  Using habitat typing protocols 
developed by CDFG, the mesohabitat mapping consisted of walking upstream or downstream 
and delineating the mesohabitat units.  The location of the upstream and downstream boundaries 
of habitat units was recorded with a Real Time Kinematic (RTK) Global Positioning System 
(GPS) unit.  The mesohabitat units were also delineated on aerial photos.   
 
Following the completion of the mesohabitat mapping on April 16, 2009, the mesohabitat types 
and number of habitat units of each habitat type in each segment were enumerated, and 
shapefiles of the mesohabitat units were created in a Geographic Information System (GIS) using 
the GPS data and aerial photos flown on October 27, 2008.  Since we were not able to get 
permission for access to the upper 1.54 miles of the Valley Floor Reach, identification of habitat 
types and shapefiles for this area was made solely using the October 27, 2008 aerial photos.  The 
area of each mesohabitat unit was computed in GIS from the above shapefiles.  A total of 444 
mesohabitat units were mapped for the three reaches.  Table 5 summarizes the mesohabitat types, 
area totals and numbers of each type recorded during the habitat mapping process.   
 
During the course of conducting the mesohabitat mapping, we also attempted to collect fall-run 
Chinook salmon spawning HSC.  We were only able to locate a total of 20 redds, which were 
insufficient data for use in developing spawning HSC. 

 
Field Reconnaissance and Study Site Selection 

 
Juvenile fall-run Chinook salmon rearing 
 
Field reconnaissance in April and May 2009 investigated potential study sites in the Boero and 
Valley Floor reaches.  Based on the results of the mesohabitat mapping and field reconnaissance, 
a list of potential study sites was developed.  Using the final list of potential study sites, we 
selected five habitat study sites that will represent the habitat types found in the Boero and 
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Table 5 
FY 2009 South Cow Creek Mesohabitat Mapping Results  

 

Mesohabitat Type South Cow Creek Units  

Area Totals (ft2) 

Number of Units 

Side Channel Pool 51,292 32 

Main Channel Pool 697,366 94 

Side Channel Riffle 19,584 40 

Main Channel Riffle 261,901 124 

Side Channel Run 15,277 13 

Main Channel Run 234,679 100 

Side Channel Glide 1,156 2 

Main Channel Glide 138,234 37 

Cascade 493 2 
 
Valley Floor reaches.  We randomly selected the habitat study sites to insure unbiased selection 
of the study sites.  The following is the final list of the five study sites, listed in order from 
upstream to downstream:  Jones, Poole, Farrell, Sabanovich and Boero. 
    

Transect Placement (study site setup) 
 

Juvenile fall-run Chinook salmon rearing 
 
The Poole, Jones, Sabanovich, and Farrell study sites were established in April 2009, while the 
Boero study site was established in May 2009.  For the sites selected for modeling, the 
landowners along both riverbanks were identified and temporary entry permits were sent, 
accompanied by a cover letter, to acquire permission for entry onto their property during the 
course of the study. 
 
For each study site, a transect was placed at the up- and downstream ends of the site.  The 
downstream transect will be modeled with the Physical Habitat Simulation System (PHABSIM) 
to provide water surface elevations as an input to the 2-D model.  The upstream transect will be 
used in calibrating the 2-D model.  The initial bed roughnesses used by River2D are based on the 
observed substrate sizes and cover types.  A multiplier is applied to the resulting bed 
roughnesses, with the value of the multiplier adjusted so that the WSEL generated by River2D at 
the upstream end of the site match the WSEL predicted by the PHABSIM transect at the 
upstream end of the site.  Transect pins (headpins and tailpins) were marked on each river bank 
above the 300 cfs water surface level using rebar driven into the ground and/or bolts placed in 
tree trunks.  Survey flagging was used to mark the locations of each pin.  We also installed 
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horizontal bench marks that act as control points for the bed topography data collection when 
using a robotic total station.  After installing the horizontal bench marks, data was collected to 
establish a precise set of location coordinates for each horizontal bench mark using survey-grade 
RTK GPS. Vertical benchmarks (lagbolts in trees or bedrock points) were established, and 
marked with paint and flagging. 
 

Hydraulic and Structural Data Collection 
 
Juvenile fall-run Chinook salmon rearing 
 
Hydraulic and structural data collection for the Boero study site was completed in FY 2009.    
Low and medium flow water surface elevations were collected for all five sites.  Velocity sets 
were collected for the transects at the Boero, Poole, Jones, and Farrell sites.  Depth and velocity 
measurements were made by wading with a wading rod equipped with a Marsh-McBirneyR 
model 2000 or a Price AA velocity meter.  A tape was used to measure stations along the 
transects.  Substrate and cover (Tables 6 and 2) along the transects were determined visually.  
Dry bed elevations and substrate and cover data along the transects were collected and the 
vertical benchmarks were tied together for the Boero, Poole and Jones sites.  Due to lack of 
sufficient funds and time constraints, we were unable to collect data on the Sabanovich study site 
and eliminated it from the study. 
 
We collected the data between the inflow and outflow transects by obtaining the bed elevation 
and horizontal location of individual points with a total station or survey-grade RTK GPS, while 
the cover and substrate was visually assessed at each point.  Bed topography data collection was 
completed for the Boero study site and a majority of the data was collected for the Poole, Jones, 
and Farrell sites.  Stage of zero flow at the outflow transect was surveyed in for the Boero, Poole, 
and Jones sites.  We anticipate collecting high flow water surface elevations during the winter of 
2009-2010 on the four study sites.  We will also complete the bed topography data collection on 
the Poole, Jones, and Farrell study sites in FY 2010.  
 
To validate the velocities predicted by the 2-D model within the Boero, Poole, and Jones study 
sites, depth, velocities, substrate and cover measurements were collected in the site by wading 
with a wading rod equipped with a Marsh-McBirney model 2000 velocity meter.  The horizontal 
locations and bed elevations were determined by taking a total station shot on a prism held at 
each point where depth and velocity were measured for these sites.  A total of 50 representative 
points were measured throughout each site.  We anticipate completing the hydraulic and 
structural data collection for the four rearing sites in FY 2010.   
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Table 6 
 Substrate Descriptors and Codes 
 
 

Code 
 

Type 
 

Particle Size (inches) 
 

0.1 
 

Sand/Silt 
 

< 0.1 
 

1 
 

Small Gravel 
 

0.1 – 1 
 

1.2 
 

Medium Gravel 
 

1 – 2 
 

1.3 
 

Medium/Large Gravel 
 

1 – 3 
 

2.3 
 

Large Gravel 
 

2 – 3 
 

2.4 
 

Gravel/Cobble 
 

2 – 4 
 

3.4 
 

Small Cobble 
 

3 – 4 
 

3.5 
 

Small Cobble 
 

3 – 5 
 

4.6 
 

Medium Cobble 
 

4 – 6 
 

6.8 
 

Large Cobble 
 

6 – 8 
 

8 
 

Large Cobble 
 

8 – 10 
 

9 
 

Boulder/Bedrock 
 

> 12 
 

10 
 

Large Cobble 
 

10 – 12 

 
Hydraulic Model Construction and Calibration 

 
Juvenile fall-run Chinook rearing  
 
The topographic data for the 2-D model (contained in bed files) is first processed using the 
R2D_Bed software, where breaklines are added to produce a smooth bed topography.  The 
resulting data set is then converted into a computational mesh using the R2D_Mesh software, 
with mesh elements sized to reduce the error in bed elevations resulting from the mesh-
generating process to 0.1 foot where possible, given the computational constraints on the number 
of nodes.  The resulting mesh is used in River2D to simulate depths and velocities at the flows to 
be simulated. 
 
The PHABSIM transect at the outflow end of each site is calibrated to provide the WSEL at the 
outflow end of the site used by River2D.  The PHABSIM transect at the inflow end of the site is 
calibrated to provide the water surface elevations used to calibrate the River2D model.  The 
initial bed roughnesses used by River2D are based on the observed substrate sizes and cover 
types.  A multiplier is applied to the resulting bed roughnesses, with the value of the multiplier 
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adjusted so that the WSEL generated by River2D at the inflow end of the site match the WSEL 
predicted by the PHABSIM transect at the inflow end of the site8.  The River2D model is run at 
the flows at which the validation data set was collected, with the output used to determine the 
difference between simulated and measured velocities, depths, bed elevations, substrate and 
cover.  The River2D model is also run at the simulation flows to use in computing habitat. 
All data for the four fall-run Chinook salmon rearing sites have been compiled and checked.  
PHABSIM calibration has been completed for two sites (Boero and Poole sites).  Construction 
and calibration of the 2-D hydraulic model has been completed for the Boero site. Construction 
and calibration of the 2-D hydraulic models as described above for the three other study sites and 
running the production runs for the simulation flows for all four sites will be completed in FY 
2010.   
 

Habitat Suitability Criteria Development 
 

Juvenile fall-run Chinook salmon rearing 
 
We will be using habitat suitability criteria developed for the Lower Alluvial Segment of Clear 
Creek for fall-run fry and juvenile Chinook salmon rearing.  
 

Habitat Simulation 
 
Juvenile fall-run Chinook salmon rearing 
 
Using the fall-run Chinook salmon fry and juvenile rearing HSC developed for the Lower 
Alluvial Segment of Clear Creek, fall-run Chinook salmon fry and juvenile rearing habitat will 
be computed over a range of discharges for the four rearing sites in South Cow Creek.  
Completion of this phase of the study will occur in FY 2010.  We anticipate completing draft and 
final reports on the 2-D modeling of the fall-run Chinook salmon juvenile rearing in South Cow 
Creek in FY 2010. 

 
FISHERIES INVESTIGATIONS 

 
Re-examine Clear Creek data on Adult Spring Chinook 

 
Methods 
 
The purpose of this task was to determine if the increase in Weighted Useable Area (WUA) was 
due to an increase in habitat quality or due to an increase in area.  To accomplish this task, we 
needed to compute, over a range of flows, the amount of area of spring-run Chinook salmon 
spawning habitat, to compare it to the amount of WUA from U.S. Fish and Wildlife Service 
(2007).  The amount of area of habitat can be computed in River2D by using binary criteria, 

                                                 

 8 This is the primary technique used to calibrate the River2D model. 
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which have a suitability of 1 for habitat and zero for non-habitat.  We developed the binary 
criteria based on the continuous criteria in U.S. Fish and Wildlife Service (2007) by defining 
habitat as depths, velocities or substrate categories that had a continuous suitability greater than 
0.2 in U.S. Fish and Wildlife Service (2007).  The binary criteria were used with the final 
Computational Mesh file (cdg) production files and the substrate file for each site to compute the 
area of spring-run Chinook salmon spawning habitat over the desired range of simulation flows 
for all sites.  The area values for the sites in each segment were added together and multiplied by 
the ratio of total redds counted in the segment to number of redds in the modeling sites for that 
segment to produce the total area per segment.  The spring-run Chinook salmon multipliers were 
calculated using redd counts from 2000-2005. 
 
Results 
 
The binary criteria that were used to compute the area of spring-run Chinook salmon spawning 
habitat are given in Table 7, while the comparison of area of spring-run Chinook salmon 
spawning habitat to the amount of WUA from U.S. Fish and Wildlife Service (2007) is shown in 
Figures 1 and 2. 
 
Discussion 
 
For the upper alluvial segment, which contains the vast majority of the spring-run Chinook 
salmon spawning habitat, as compared to the canyon segment, the increase in WUA was due to 
an increase in area up to a flow of approximately 400 cfs, while the increase in WUA going from 
400 to 900 cfs was due to an increase in quality.  Specifically, the amount of area of spring-run 
Chinook salmon spawning habitat changed in the same manner as the amount of WUA from 
U.S. Fish and Wildlife Service (2007) for flows up to 400 cfs, while the flow-habitat relationship 
patterns for area and WUA deviated for flows greater than 400 cfs. 
 

Table 7 
Binary Criteria Used to Compute Area For Spring-run Chinook Salmon Spawning Habitat 

 
 

Velocity 
(ft/s) 

 
Velocity 

Suitability 

 
Depth (ft) 

 
Depth 

Suitability 

 
Substrate 

Code 

 
Substrate 
Suitability 

      

0.00 0 0.0 0 0 0 
1.19 0 1.1 0 1.2 0 
1.20 1 1.2 1 1.3 1 
4.40 1 7.0 1 3.4 1 
4.41 0 7.1 0 3.5 0 

100 0 100 0 100 0 
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Figure 1 

Area and WUA for Spring-run Chinook Salmon Spawning in the Upper Alluvial Reach 

 
Figure 2 

Area and WUA for Spring-run Chinook Salmon Spawning in the Canyon Reach 
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Clear Creek Biovalidation 
 

Methods 
 
This task had the following six subtasks:  1) compare 2008 juvenile habitat use to juvenile 
Combined Suitability Index (CSI); 2) compare 2005 juvenile habitat use to juvenile CSI;  
3) compare 2007 Spawning Area Mapping (SAM) to adult CSI; 4) compare 2008 SAM to adult 
CSI;  5) after building fall-run Chinook salmon adult criteria from unoccupieds in model, rerun 
earlier analysis comparing SAM and CSI; and 6) review statistical approach for these.  The 
juvenile habitat use and spawning area mapping data was supplied by the Red Bluff Fish and 
Wildlife Office.  Discussions during FY 2009 narrowed the scope of this work to examining data 
from restoration sites 3A and 3B.  CSI values for site 3B will be computed from the River2D 
model developed for the Clear Creek IFIM study.  CSI values for site 3A will be computed from 
a River2D model that will be developed using:  1) bed topography data previously collected by 
Graham Matthews and Associates; 2) substrate and cover polygon mapping that the Energy 
Planning and Instream Flow Branch conducted in FY 2009; and 3) transect data collected by the 
Energy Planning and Instream Flow Branch in FY 2009. 
 
Results 
 
A transect was placed at the up- and downstream ends of the 3A study site.  The downstream 
transect will be modeled with PHABSIM to provide water surface elevations as an input to the 2-
D model.  The upstream transect will be used in calibrating the 2-D model.  The initial bed 
roughnesses used by River2D are based on the observed substrate sizes and cover types.  A 
multiplier is applied to the resulting bed roughnesses, with the value of the multiplier adjusted so 
that the WSEL generated by River2D at the upstream end of the site match the WSEL predicted 
by the PHABSIM transect at the upstream end of the site.  Transect pins (headpins and tailpins) 
were marked on each river bank above the 900 cfs water surface level using rebar driven into the 
ground and/or bolts placed in tree trunks.  Survey flagging was used to mark the locations of 
each pin.  Vertical benchmarks (lagbolts in trees or bedrock points) were established, and marked 
with paint and flagging. The location coordinates for each transect pin and elevations of the 
vertical benchmarks were determined using survey-grade RTK GPS. 
 
Low, medium and high flow water surface elevations, dry bed elevations, substrate and cover 
data, and velocity sets were collected for the transects at the 3A study site in FY 2009.  Depth 
and velocity measurements were made by wading with a wading rod equipped with a Marsh-
McBirneyR model 2000 or a Price AA velocity meter.  A tape was used to measure stations along 
the transects.  Substrate and cover (Tables 6 and 2) along the transects were determined visually.   
 
Substrate and cover polygons were mapped throughout the 3A study site up to the 900 cfs water 
surface level using survey-grade RTK GPS  in FY 2009.  This data will allow us to assign 
substrate, cover and bed roughness values to each of the bed topography data points previously 
collected by Graham Matthews and Associates.  We plan to conduct hydraulic modeling 
construction and calibration and habitat simulation for the 3A study site in FY 2010 once we 
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have obtained the bed topography data previously collected by Graham Matthews and 
Associates.  After we have completed the hydraulic modeling construction and calibration and 
habitat simulation for the 3A and 3B study sites, we will be able to complete the first five 
subtasks.  The sixth subtask was completed in FY 2009 (Appendix A) by Western Ecosystems 
Technology, Inc. under a Cooperative Agreement funded by the Energy Planning and Instream 
Flow Branch.  We plan to complete this entire task in FY 2010. 
 

Sacramento River Tributaries Flow and Temperature Monitoring 
 

Methods 
 
The purpose of this task was to produce regression formulas that could be used to predict flows 
and water temperatures for the following tributaries of the Sacramento River using flow and air 
temperature data available on the Internet:  Antelope Creek, South Fork Cottonwood Creek, 
Stillwater Creek, Churn Creek and Bear Creek.  The first step for this task was to identify 
historical gage flow records that could be used to develop regression formulas to predict flows.  
Additional flow data was collected in FY 2009 to corroborate the flow/flow regression equations 
and to develop flow/flow regression equations for tributaries or locations which had never been 
gaged.  Flow measurements were made using a tape to measure stations and by wading with a 
wading rod equipped with a Marsh-McBirneyR model 2000 or a Price AA velocity meter to 
measure depths and velocities.  Depths were measured to the nearest 0.05 foot and velocities 
were measured to the nearest 0.01 foot/sec for 20 seconds at 0.6 of the depth.  Starting in May, 
we also noted the presence or absence of flow for three tributaries of Antelope Creek (Butler 
Slough, Craig Creek and New Creek) at the same time that we measured flows on Antelope 
Creek.  In addition, we deployed HOBO Water Temperature Pro V2 probes, manufactured by 
Onset Corporation, at the locations where we collected flow data.  We installed two probes for 
each stream for redundancy in case probes were lost due to theft or high flows.  Each probe was 
placed in a 2-inch diameter PVC housing (with holes drilled into it) and caps and secured to trees 
or other immovable objects near the water’s edge with 1/8-inch cable.  The thermographs were 
set up to record water temperatures every half-hour.  Thermographs were initially deployed on 
March 16 and 19, 2009 and data was downloaded from the thermographs every other month with 
an optical shuttle.  Daily average water temperatures were calculated for each thermograph, and 
then the daily average water temperatures for the two thermographs at each site were averaged to 
produce the daily average water temperature at each site for each day that data was collected.  
We used the data we collected to develop flow/flow regression equations for tributaries or 
locations which had never been gaged and regressions of water temperature versus air 
temperature and flow. 
 
Results 
 
Table 8 summarizes the historical gage flow records used to develop regression formulas to 
predict flows, while Table 9 presents the regression formulas.  Figures 3 to 6 show the historical 
gage flows and regression equations.  No historical gage data is available for Stillwater Creek.   
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Table 8 
Historical Gage Data Used to Develop Flow/Flow Regresssions  

 

Stream USGS Gage Number Period of Record 

Cow Creek 11374000 10/1/49-present 
Cottonwood Creek 11376000 10/1/40-present 

Deer Creek 11383500 10/1/40-present 
Churn Creek 11372050 10/1/60-9/30/66 

Bear Creek 11374100 10/1/59-9/30/67 
South Fork Cottonwood Creek 11375900 6/23/82-9/30/85 

Antelope Creek 11379000 10/1/40-9/30/82 

 
 

Table 9 
Flow/Flow Regresssions  

 

Regression Equation R2 

Churn Creek Flow = Max (0, -4.19 + 0.035 x Cow Creek Flow) 0.565 
Bear Creek Flow = Max(4, 10 (-0.0828 + 0.724 x log (Cow Creek Flow))) 0.908 

South Fork Cottonwood Creek Flow = Max (0, -59.49 + 0.397 x Cottonwood 
Creek Flow) 

0.959 

Antelope Creek Flow = Max( 0, -20.4 + 0.4977 x Deer Creek Flow) 0.853 

 
Figures 7 to 10 show the annual average hydrographs for Churn, Bear, South Fork Cottonwood 
and Antelope Creeks, computed from the period of record flows for Cow, Cottonwood and Deer 
Creeks and the flow/flow regression equations in Table 9.  
 
We were unable to get access to the location of the historical gage on Antelope Creek since the 
location is on private land.  This gage was located upstream of the Edwards/Los Molinos Mutual 
diversion dam.  The only locations where we were able to get access were downstream of this 
dam, and thus we needed to develop a new flow/flow regression for Antelope Creek downstream 
of the Edwards/Los Molinos Mutual diversion dam.  In March and May, we measured the flow 
of Antelope Creek at Highway 99.  However, since the flow in May was greater than the flow in 
March, due to considerable flow coming from a tributary (likely an agricultural return flow) 
located approximately 75 feet upstream of Highway 99, we moved the discharge location for 
Antelope Creek to the upper end of Cone Grove Park; discharges were measured at this location 
in June through September.  Based on the thermograph data, it appeared that the flow for 
Stillwater Creek dropped to zero on July 16, 2009.  Flow in Cottonwood Creek had reached zero 
by September 15, 2009.   
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Figure 3 
Churn Creek Flow Data and Regression 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 
Bear Creek Flow Data and Regression 
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Figure 5 

South Fork Cottonwood Creek Flow Data and Regression 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6 
Antelope Creek Flow Data and Regression 
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Figure 7 

Churn Creek Average Annual Hydrograph 
 

 
Figure 8 

Bear Creek Average Annual Hydrograph
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Figure 9 

South Fork Cottonwood Creek Average Annual Hydrograph 
 

 
Figure 10 

Antelope Creek Average Annual Hydrograph Upstream of Edwards/Los Molinas Mutual Dam 
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Table 10 summarizes the flow measurements that we made in FY 2009, while Table 11 presents 
the regression formulas based on the data in Table 10 and gage flows for Cow and Deer Creeks.  
Figures 11 and 12 show the annual average hydrographs for Stillwater and Antelope Creeks, 
computed from the period of record flows for Cow and Deer Creeks and the flow/flow regression 
equations in Table 11.  Figures 13 to 15 show the measured flows for Churn, Bear  and South 
Fork Cottonwood Creeks relative to the regression equations computed from historical gage data.  
Table 12 presents the flow observations we made for New Creek, Craig Creek and Butler 
Slough.   
 
Figures 16 to 20 show the results of the FY 2009 water temperature monitoring, while Table 13 
shows the regression equations we developed from the FY 2009 water temperature data.  Web 
sites for the flow and air temperature data to plug into the regression equations in Tables 9, 11 
and 13 are given in Table 14. 

Table 10 
Fiscal Year 2009 Flow Measurement Data (cfs) 

 

Date/ 
Location 

Churn 
Creek 

Bear 
Creek 

Stillwater 
Creek 

South Fork 
Cottonwood 

Creek 

Antelope Creek 
at Highway 99 

Antelope Creek at 
upstream end of 

Cone Grove Park 
       

Easting9 0553312 0575441 0562804 0556046 0575817 0573812 
Northing 4499204 4486979 4481286 4468219 4440215 4447042 
3/16/09  79.2  184.3 6.3  
3/19/09 28.8  212.8    
5/26/09 1.7 13.8 8.7 58.1 14.4  

6/24/09  10.23  24.6  6 
6/25/09 1.56  2.22    
7/23/09 0.16 3.7 0 0.12  1.36 
8/26/09  3.95 0   0.287 
9/15/09 < 0.1 6.13 0 0  1.23 

 
Table 11 

Flow/Flow Regresssions  
 

Regression Equation R2 

Stillwater Creek Flow = 10 (-2.05 + 1.61 x log (Cow Creek Flow)) 0.901 

Antelope Creek10 Flow = Max( 0, -9.08 + 0.135 x Deer Creek Flow) 0.983 

                                                 
9 Eastings and Northings are in UTM Zone 10, NAD 83, meters. 
10 This regression is for Antelope Creek at the upstream end of Cone Grove Park, and can be used 
to predict Antelope Creek flows downstream of the Edwards/Los Molinos Mutual diversion dam. 
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Figure 11 

Stillwater Creek Average Annual Hydrograph 
 

 
 Figure 12 

Antelope Creek Average Annual Hydrograph Downstream of Los Molinas Mutual Dam 
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Figure 13 

Churn Creek Flows Measured in FY 2009 (Red Triangles) Versus Historic Gage Data (Black 
Dots) and Flow/Flow Regression Calculated from Historic Gage Data (Purple Line) 

 

 
Figure 14 

Bear Creek Flows Measured in FY 2009 (Red Triangles) Versus Historic Gage Data (Black 
Dots) and Flow/Flow Regression Calculated from Historic Gage Data (Purple Line) 
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Figure 15 

South Fork Cottonwood Creek Flows Measured in FY 2009 (Red Triangles) Versus Historic 
Gage Data (Black Dots) and Flow/Flow Regression Calculated from Historic Gage Data (Purple 

Line) 
 

Table 12 
Fiscal Year 2009 Flow Observation Data 

 

Date New Creek Craig Creek Butler Slough 

    

5/26/09 Yes Yes11 Yes 
6/24/09 Yes Yes Yes 
7/23/09 Yes No Yes 
8/26/09 Yes12 No No 
9/15/09 Yes No Yes 

 

                                                 
11 Most of the flow in May and June and all of the flow in July through September was coming 
from a pipe located approximately 30 feet downstream of the Highway 99 bridge. 
12 All of the flow in August was agricultural return flows. 
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Figure 16 

Churn Creek Water Temperatures in FY 2009 Versus 59° F Threshold For Smolt Survival 
(Mesick 2009)  

 
 

 
 Figure 17 

Bear Creek Water Temperatures in FY 2009 Versus 59° F Threshold For Smolt Survival 
(Mesick 2009)  
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Figure 17 

Stillwater Creek Water Temperatures in FY 2009 Versus 59° F Threshold For Smolt Survival 
(Mesick 2009).  Stillwater Creek flows dropped to zero after 7/15/09. 

 
 

 
Figure 18 

South Fork Cottonwood Creek Water Temperatures in FY 2009 Versus 59° F Threshold For 
Smolt Survival (Mesick 2009) 
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Figure 19 
Antelope Creek Water Temperatures in FY 2009 Versus 59° F Threshold For Smolt Survival 

(Mesick 2009) 
 
Discusssion 

 
Flows for South Fork Cottonwood and Churn Creeks dropped to very low levels starting in July; 
for this time period, flow in South Fork Cottonwood Creek was irrigation percolation into the 
streambed while flow in Churn Creek was water percolating from irrigated landscape.  As a 
result, flows during this period give an incorrect picture of what is baseline for the watershed and 
likely do not provide fish access from these creeks.  The regression formula for Stillwater Creek 
in Table 11 should only be used for Cow Creek flows greater than 26 cfs; based on the data we 
collected in FY 2009, we would predict that the flow in Stillwater Creek would be zero for Cow 
Creek flows of 26 cfs or less.   
 
Churn Creek flow measurements in FY 2009 were generally consistent with historic gage 
records with the exception of the flow measurement on March 19.  This flow measurement was 
likely influenced by an extreme rain event on March 16 that was centered on the Churn Creek 
watershed.  Thus, we do not see this measurement as suggesting that the Churn Creek flow/flow 
regression no longer applies to Churn Creek.  However, we would recommend additional flow 
measurements to confirm that the Churn Creek flow/flow regression still applies to Churn Creek, 
since the remaining measurements were taken at very low flows.  It is possible that summer 
flows in Churn Creek have increased since the 1960s due to water percolating from irrigated 
landscape, since the flow/flow regression predicted that Churn Creek flows would be zero from 
June through September 2009.  If this is the case, the low end of the Churn Creek flow/flow  
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Table 13 

Water Temperature Regresssions  
 

Regression Equation R2 

Churn Creek Water Temp = 36.5 + 0.451 x Air Temp – 0.012 x Cow Creek Flow 0.866 
Bear Creek Water Temp = 24.3 + 0.620 x Air Temp – 0.0137 x Cow Creek Flow 0.887 

 Stillwater Creek Water Temp = 35.2 + 0.558 x Air Temp – 0.0163 x Cow Creek Flow  0.889 
South Fork Cottonwood Creek Water Temp = 34.8 + 0.497 x Air Temp – 0.00439 x Cottonwood Creek Flow 0.742 

Antelope Creek Water Temp = 32.3 + 0.534 x Air Temp – 0.0102 x Deer Creek Flow 0.892 

 
 Table 14 

Web Sites for Data to Plug in to Equations in Tables 9, 11 and 13 
 

Parameter Web Site 

Cow Creek 
Flows 

http://waterdata.usgs.gov/nwis/dv?cb_00060=on&format=html&site_no=11374000&referred_module=sw 

Cottonwood 
Creek Flows 

http://waterdata.usgs.gov/nwis/dv?cb_00060=on&format=html&site_no=11376000&referred_module=sw 

Deer Creek 
Flows 

http://waterdata.usgs.gov/nwis/dv?cb_00060=on&format=html&site_no=11383500&referred_module=sw 

Air 
Temperatures 

http://cdec.water.ca.gov/cgi-progs/queryDaily?s=RED 
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regression (i.e. Cow Creek flows less than approximately 150 cfs) would no longer result in 
accurate estimates of Churn Creek flows.  Although the flow/flow regression for Bear Creek 
consistently overestimated Bear Creek flows, relative to measurements taken in FY 2009, the 
Bear Creek flows measured in FY 2009 fell within the range of historical gage flows.  Similarly, 
the South Fork Cottonwood Creek flows measured in FY 2009 fell within the range of historical 
gage flows.  Thus, it appears likely that the Bear and South Fork Cottonwood Creek flow/flow 
regressions still apply to Bear and South Fork Cottonwood Creeks; additional flow 
measurements would help to confirm this conclusion. 
 
Water temperatures in FY 2009 exceeded a 59° F threshold for smolt survival (Mesick 2009) on 
4/13, 4/19, 3/27, 3/27 and 3/20 for, respectively, Churn, Bear, Stillwater, South Fork 
Cottonwood and Antelope Creeks.  This suggests that Churn and Bear Creeks may be better 
choices for restoration activities than the other three Sacramento River tributaries, since water 
temperatures stay below the 59° F threshold longer.  The water temperature regression equations 
all showed a negative relationship between water temperature and flow, i.e. water temperatures 
were lower at higher flows.  This suggests that water temperatures in these tributaries will stay in 
an acceptable range for a longer period in wetter years, versus FY 2009.  We recommend that 
additional water temperature data be collected in FY 2010 to verify the water temperature 
regression equations in Table 13. 
 

Red Bluff Interim Pumping Plant Screens Hydraulic Evaluation 
 

Methods 
 
On June 1 through 11, 2009, an interagency team, with representatives from the Service, 
National Marine Fisheries Service and the CDFG, measured near-screen velocities on the 10 
cone screens located on the intake for the Red Bluff Interim Pumping Plant (Appendix B).  
Approach and sweeping velocities were measured with a SonTek 16 Mhz Acoustic Doppler 
Velocimeter (ADV) provided by the CVPIA Anadromous Fish Screen Program.  The ADV 
measured near-screen velocities 3 inches from the screen face.  Velocities were measured at 48 
locations, in an array of 6 depths and 8 positions around each screen.  Velocity measurements 
were recorded at a rate of 25 HZ for a minimum of 60 seconds. 
 
Results 
 
Approach velocities on screen numbers 6 – 10 had a fairly even distribution of flow through the 
entire screen area, with no single point exceeding 0.45 ft/s.  Flow distribution on screen numbers 
1 – 5 were heavily influenced by river current.  Approach velocities in areas receiving direct 
impact of the current far exceeded the design target value of 0.35 ft/s. 
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Discussion 
 
We recommend that three complete sets of additional velocity measurements be made on the Red 
Bluff Interim Pumping Plant screens in FY 2010 under a range of different Sacramento River 
flows and pumping plant operations.  The flow and velocity information obtained at the cone 
screens will help fishery managers assess whether modifications of baffles have ameliorated 
impediments (e.g. impingement), caused by the operations of the interim pumps, to the 
downstream migration of various federally listed fish species.   

 
COMPARISON OF PHABSIM AND RIVER2D MODELS  

 
We published a paper (Appendix C) in the January 2009 issue of the International Journal of 
River Basin Management presenting a comparison of spawning habitat predictions of PHABSIM 
and River2D from our 1995-2001 CVPIA-funded studies on the Merced, American and 
Sacramento Rivers.  The paper presents the flow-habitat relationships and biological validation 
results of PHABSIM and River2D. 
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INTRODUCTION 

A critical part of any Chinook salmon habitat model is the evaluation and validation of model 
performance.  Evaluation of a model asks the basic question: “Does the model in its use of the 
available data answer the researcher’s modeling goals”.  Model validation is perhaps the most 
important stage in the model building process but is often overlooked.  Validation is the process 
used to demonstrate that the model produces reliable output.  This paper surveys the most 
relevant literature on techniques used to evaluate and validate Chinook salmon habitat models.  
The review identifies the strengths and weaknesses of the evaluation/validation methods used in 
the literature reviewed, discusses the appropriateness of the various tests for assessing model 
adequacy and draws conclusions on which techniques are regarded as the most effective.  Also 
reviewed are selected journal articles of non-Chinook salmonid species whose habitat 
requirements are similar and when evaluation/validation methods are considered to be relevant to 
those used in Chinook habitat models.  Based on the literature and the author’s experience, 
recommendations are made on identifying an optimal approach for model evaluation and 
validation.  

The paper is organized into the following sections: parametric tests, non-parametric tests, 
analysis of residuals, ad-hoc methods and simulation techniques.  Care will be taken to examine 
the relevance of the given method to the modeling component being considered by the researcher 
in the given journal article (ie. whether evaluation is being done at the sampling stage, for the 
purpose of verifying the hydrodynamic component or biological component, overall goodness of 
fit, or model comparison).  When closely related tests to those found in the literature seem 
relevant and useful these are reported with key authors being cited.   An indexed table (Table 2) 
summarizing the review by method, journal article and test objective is given to help reference 
the reviewed material. Variance components related to model evaluation/validation methods will 
be noted. 

Section 1 – Parametric Techniques   

Section 1.1 - Pearson correlation Coefficient (r) and R2 

Pearson’s product-moment correlation coefficients (rp) and R2 measures are single number 
descriptors of the degree of linear association between paired samples and model fit respectively.  
R2 , in the case of linear models, expresses the fraction of variation in the response explained by 
the predictors.  R2 used in logistic regression takes a number of forms requiring the user to check 
software documentation to be sure which R2 is actually being used.  This is essential as the 
meaning and interpretation of R2 applied to logistic regression models varies among the different 
forms.  Since r and R2 are narrowly focused on only a single aspect of the model/data 
relationship other methods of model evaluation and model validation should also be used.  



3 

 

Ward et al. (2009) used correlation and R2 to test for a relationship between invertebrate biomass 
and canopy shading and to determine whether the variation in prey biomass was confounded 
with salmon stocking density or loss.  In the Ward study confidence intervals are reported for R2. 
Palm et al (2009) used R2 in a linear regression of minimum winter habitat suitability for brown 
trout  and the percentage (arcsine square root transformed) of tagged trout remaining in their site 
of origin.  The correlation coefficient and R2 are applied in instream flow incremental (IFIM) 
models (Bovee 1978, Bovee 1998,Wood 2009) to assess and validate the calibration of linear 
regression models in which data input as discharge, temperature, depth, velocity, substrate and 
cover is predicted using gauging station data or other sampled data.  Some background on the 
concept of IFIM will be given to clarify the context in which r and R2 are used in this type of 
model.  The Instream Flow Incremental Method (IFIM) was developed by personnel of the 
Cooperative Instream Flow Service Group, U.S. Fish and Wildlife Service, Fort Collins, 
Colorado.  IFIM allows quantification of the amount of potential habitat available for a species 
and life history phase, in a given reach of stream at different channel configurations, slopes, 
water velocities, depths, substrates and other physical variables (Bovee 1978).  IFIM is 
composed of a library of linked models that characterize the spatial and temporal features of 
habitat resulting from a given river regulation alternative where the model is adaptive and can be 
tailored to specific needs (Bovee et al. 1998).   

One source of input data for hydrodynamic models is discharge.  The amount and type of error in 
discharge measurement in space and time is certain to affect the output of the final model. 
Gauging station error analysis is discussed in the course book on IFIM developed by Bovee 
(1996).  In many cases the hydrologic input component of the model is to be evaluated under 
situations in which  semi-permanent stream gauges are installed and calibrated later to be used to 
relate river stage to discharge within the study reach.  Evaluation of model input data at this stage 
consists of developing and testing various regression models relating discharges between the 
semi-permanent and long-term gages (Bovee 1996).  A least squares linear regression is 
performed between the logarithms of the stage and the logarithms of the discharge.  An indicator 
of the overall quality of a gage station regression model is a goodness of fit criterion such as R2 

or adjusted R2 ( 2
adjR ) for multiple regression models.  In this context R2 is  the portion of the 

variation in log transformed stage explained by the independent variable(s), log transformed 

discharge (Neter et al. 1996, Mendenhall and Sincich 2004). 2
adjR provides an adjustment for the 

number of independent variables in the model and provides some protection against the effects of 
model over fitting.  The correlation coefficient (r) or multiple correlation coefficient may also be 
used, where Bovee (1996) recommends that r equal 0.90 or greater where the r is highly 
significant (e.g., p < 0.05).  If this criterion for r is not met the author advises using another 
method or reducing measurement error, though the method by which this could be achieved is 
not given.  It could be argued that this cutoff level for r should also be based on the researcher’s  
expected model performance and the objectives of the study since lower tolerances for final 
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model predictions would necessitate higher values of R2 and r for acceptable calibration of 
physical model components.  Sample size will also affect the precision of regression models, 
however the author does not address the key relationship between sample size, model evaluation, 
and the statistical power necessary to correctly reject a false null hypothesis of non-zero 
regression coefficients.  In other words r and R2 need to be supplemented with other tests of 
model adequacy. R2 and r are examples of model evaluation which fall into the category of re-
substitution methods where the data used to fit the model is also used to test it.  Re-substitution 
methods tend to suggest an overly optimistic accounting of model goodness of fit and validation 
since they optimize only over the error structure of the data on which the model was fit (Neter et 
al. 1996, Mendenhall and Sincich 2004). 

Williams (2009b) suggests the use of logistic regression as an alternative to habitat suitability 
models.  Knapp and Preisler (1999) in developing habitat models to predict Chinook salmon 
redds applied a logistic regression analysis in which R2 was reported as a measure of model fit 
and for the purpose of model comparison.  Various measures called R2 have been proposed for 
use in logistic regression as a measure of model goodness of fit (Hosmer and Lemeshow 2000, 
Mittlbock and Schemper 1996, Menard 2000, Shtatland et al. 2000 SAS, Paper 256-25). 
Analogous to R2 in linear regression defined as the ratio of explained sum of squares to total sum 
of squares, R2 in logistic regression is a measure of proportional reduction in error measure.  
These measures apply comparisons of the predicted values from the fitted model to those from 
model (0), a no data or intercept only model.  These measures may best be used to compare 
models fit to the same data, Hosmer and Lemeshow 2000. However McCullagh and Nelder 
(1989) warn against sole reliance on the Deviance and Pearson’s statistic so that use of a measure 
of R2 for logistic regression should be considered, Shtatland et al. 2000.  According to Mittlbock 
and Schemper 1996 R2 measures for logistic regression should have three properties: (1) the 
measure should have an easily understood interpretation (2) the measure can attain a lower 
bound of 0 and an upper bound of 1 and (3) the measure is consistent with the character of 
logistic regression (i.e., not being changed by a linear transformation of model covariates).  
These authors recommend two for regular use: the squared Pearson correlation coefficient of 
observed outcome with the predicted probability and a linear regression-like sum-of-squares R2.  
For a situation with n covariate patterns the squared Pearson correlation coefficient is 
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Hosmer and Lemeshow 2000 provide versions of the two measures which apply to the case when 
J < n covariate patterns 

 

( )( )

( ) ( )

2

12

2 2

1 1

ˆ

ˆ

J

j j j j j
j

c J J

j j j j j
j j

y m y m m

r

y m y m m

π π

π π

=

− =

 
− − 

 =
   

− × −   
   

∑

∑ ∑
 (1.3) 
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The R2 available in SAS: 2
SASR is defined as follows 

 ( ) ( ){ }2 1 exp 2 log log 0 /SASR L M L n = − −   (1.5) 

where ( )logL M and ( )log 0L are the maximized log likelihood for the fitted model and the 

“null” model having the intercept only, and n is the sample size, Shtatland et al. 2000.  Since this 
measure cannot attain a value of 1, Nagelkerke (1991)  gave the following adjustment: 

 ( )( )2 2 / 1 exp 2log 0 /SAS SASAdj R R L n − = −   (1.6) 

which is labeled in SAS as “Max-rescaled RSquare”.  2
SASAdj R− has been criticized by Mittlbock 

and Schemper (1996) in that there is no reason why the scaling for intermediate values of the 

measure should be adequate. Thus in applications the value of 2
SASR may be too small and the 

value of 2
SASAdj R−  may be too large.  To correct for this shortcoming Shtatland et al. 2000 

propose a deviance R2 as follows 

 ( ) ( ) ( ) ( )2 log log 0 / log log 0DEVR L M L L S L   = − −     (1.7) 
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where ( ) ( )log , log 0 ,L M L and ( )logL S are the maximized log likelihoods for the currently 

fitted, “null”, and saturated models correspondingly (Hosmer and Lemeshow (1989), Agresti 

(1990, Menard (1995)).  The essence of 2
DEVR is that it compares the log-likelihood gain achieved 

by the fitted model (the numerator in 1.9 ) with the maximum potential log-likelihood gain (the 
denominator in 1.9)), Shtatland et al. 2000.  The authors state that the measure can be interpreted   
in terms of proportionate reduction in recoverable information and since it is a measure of two 

log-likelihood gains, 2
DEVR can be treated as an indicator of goodness-of –fit.  Another R2 analog 

that is based on the log-likelihood  

( ) ( ) ( ) ( ){ }
1

, log 1 log 1
n

i i i i
i

l y y yπ π π
=

= + − −∑  

where z is the observed value.  2
lR is given by   
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Here the negative log-likelihood is used, indicating that a smaller ( )ˆ,l z π− corresponds to a 

better fit.  2
lR  is called pseudo R2 in Stata’s logistic command.  2lR = 0 when model (1.3) is the 

base model and 2lR = 1 when ̂ iu = iy . Since it is based on the log-likelihood ˆ( , )l y π ,Laio and 

McGee 2003 point out that  the value of  2
lR cannot decrease when additional predictors are 

added to the model; this is not true for 2
0R .  Based on their experience with extensive simulated 

data, Laio and McGee 2003 found that r2 (1.4) and 2
0R (1.5) are almost identical numerically.  

Laio and McGee 2003 developed improved 2
,l adjR and 2

0,adjR , Mittlbock and Schemper (1996), 

with the following 
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where the bias corrected inherent prediction errors are given by  
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Respectively.  The bias terms above use independent replications of iy in logistic regression (1.3).  The 

2
,l adjR and  

2
0,adjR  can be implemented in R, R Core Development Team 2005, using the function R2.adj 

available from the authors at http://www.geocities.com/jg_liao/software.  The ( )ˆlB π and ( )ˆoB π are 

evaluated using the Monte Carlo method.  The Monte Carlo sample size N is chosen so that, with 95% 

confidence, the desired expectation is estimated with a relative error less than 5%.  In simulation studies 

Liao and McGee 2003 found that  
2
0R  and 

2
lR  increased drastically when irrelevant predictors were 

added to the model.  
2
,l adjR and  

2
0,adjR  were most robust with respect to irrelevant predictors and 

were closest to the true coefficient of determination .  It would seem appropriate that 
investigators report which specific measures of  R2  are being used as results can vary among 
measures for the same study.  Hosmer and Lemeshow (2000) state that even though logistic R2 
may be low, the model may fit the data well.  They caution that people are used to seeing high R2 
in multiple linear regression studies .  The authors advise that researchers using logistic 
regression should use and report other measures of goodness of fit as well as R2. 

Caution should be used in reporting p-values for the Pearson’s correlation coefficient based on 
the t-distribution as the assumption that the samples follow independent normal distributions is 
needed for the p-values to be valid (Efron 1982).  An alternative is to use Kendall’s rho or 
Spearman’s tau to estimate a rank based measure of association (Conover 1999).  Non-normal 
theory confidence intervals for all three of these correlation measures can be obtained through 
bootstrapping (Efron 1982, Efron and Gong 1983, Rizzo 2008, Manly 1997, Davison and 
Hinkley 1996).  Though not found in any of the journal articles reviewed, the coefficient of 
partial determination  and its square root as a measure of correlation, is useful in multiple 
regression models of filter out the reduction in R2 conditional on other variables being included 

in the model.  For example,   212,3,4r  measures how much smaller relatively, is the variability in the 

conditional distributions of Y1 given Y2, Y3, and Y4, than it is in the conditional distributions of 
Y1, given Y3 and Y4 only (Neter et al. 1996).  

Section 1.2 - Statistical Hypothesis Testing and P-Values 

A number of Chinook and steelhead habitat models employ the use of hypothesis testing and p-
values( Wood 2009, Palm et al. 2009).  Palm et al. (2009) compare habitat suitability range and 
explanatory value (R2, linear regression) of the variation in the proportion of the salmonid 
population that remained stationary and overwintered within different sites from late summer 
until late winter by comparing p-values.  However there is a current trend away from the use of 
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hypothesis testing and p-values (Johnson 1997, Burnham and Anderson 2002, Royall 1999). 
Johnson (1997) advises against the use of P-values and statistical hypothesis testing since these 
are often confused with or used instead of model evaluations based on measured effect sizes 
related to a-priori know levels of change in processes which have proven effects on a given 
response.  Instead the use of confidence intervals is recommended since these provide a 
probability interval of effect size and containment of zero in the interval indicates P>0.05 if the 
interval is at the level 95%.  Confidence intervals give an estimate of uncertainty as well.  A 95% 
confidence interval of  (-20, 400) informs us that the parameter is not as well estimated as if the 
interval was (100, 150).  The author distinguishes between statistical hypothesis testing and 
scientific hypothesis testing.  Scientific hypothesis testing should replace statistical hypothesis 
testing since the former postulates a theory which generates predictions.  These predictions are 
treated as scientific hypotheses, and an experiment is conducted to try to negate each hypothesis.  
If the results of the experiment refute the hypothesis, that result implies that the theory is 
incorrect and should be altered or thrown out.  Johnson points out that most statistical hypotheses 
are known a-priori to be false.  Estimated magnitudes of effects with their standard errors and 
other measurements of precision, such as the coefficients of variation, should always be reported 
if P-values are given.  Johnson 1997 encourages conducting the same study at the same time but 
at different sites to obtain comparable results at different spatial scales.  Similarly replicated 
studies at the same sites over time allow evaluation of temporal effects.  Evaluating a model 
ideally would involve the comparison of the results obtained by different investigators.  Meta-
analysis provides methods for combining information from repeated studies allowing less 
reliance on significance testing by investigating replicated studies, Lipsey and Wilson (2000).  
An important aspect of model evaluation should be to determine the relative importance to the 
contributions of, and interactions between, several processes (Quinn and Dunham 1983) so that 
for this purpose estimation becomes more important than hypothesis testing. 

Section 1.3 – t-tests and ANOVA, ANCOVA, Asymptotic Normal Theory Confidence Intervals 
and  Prediction Intervals 

t-tests, linear regression, ANOVA and ANCOVA are used in a wide variety of salmonid habitat 
models and are represented in many of the journal articles reviewed.  In addition to habitat 
models in which the dependent variable is continuous, examples were found in which the 
dependent variable was a proportion or percentage.  Wood (2009) applied t-tests to compare 
survival of brown trout fry across years in physical habitat models of temperature effects.  
ANOVA was used by Ward et al. (2009) to test for differences in invertebrate biomass across 
sites and by Palm et al. (2009) to evaluate differences in length between groups of fish and 
habitat suitability index between tagging sites.  In this same study analysis of covariance 
(ANCOVA) was employed to test whether increased stocking density of salmon fry yielded 
increased population density where log transformed stocking density was the predictor and 
stream-year combination was the blocking factor.  Gallagher and Gard (1999) used ANCOVA to 
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investigate the relationship between mesohabitat WUA and red numbers from 1989 through 
1996 in the Merced River and from 1991 through 1995 in the Lower American River.  The 
dependent ANCOVA variable was number of redds, and the categorical variable was year where  
the covariate was WUA.  McCarthy et al. (2009) used MANOVA to evaluate effects of forest 
cover, stream temperature, season, and fish age on food consumption and growth efficiency of 
juvenile steelhead. Here the food consumption dependent variable consisted of several functional 
groups of invertebrates such as soft bodied larvae, aquatic nymphs, winged insects and others.  
One of assumptions of MANOVA is that the data follow a multivariate normal distribution. This 
can be a sticking point when considering use of this method for which the dependent variable is 
multivariable.  Johnson and Wichern (2002) provide tests for determining whether data are 
multivariate normal.  Rosenfeld et al. (2008) applied t-tests, linear regression and ANOVA 
effectively in assessing the effectiveness juvenile coho streamside artificial side channels.  
Researchers must ensure that basic assumptions of independence, constant error variance and 
normality be met as part of the model evaluation/validation process when using linear models.  
Castleberry et al. (1996) recommended that users of PHABSIM should take sampling and 
measurement problems into account, and warned that ‘Estimates of WUA should not be 
presented without confidence intervals, . . .’ 

Section 1.4 – Likelihood Ratio Tests 

Likelihood ratio tests were used by Knapp and Preisler (1999) to test the significance of each of 
the independent variables on the probability of redd presence.  This test requires nested models, 
that is models that can be transformed into the simpler one by fixing one or more parameters. 

Section 1.5 – AIC, AICc Information Theoretic Methods 

Information theoretic methods have gained acceptance in recent years often replacing or 
supplementing traditional stepwise and best-subsets model selection and variable ranking.  AIC 
is based on the likelihood of the model with a term that  penalizes for number of parameters.  
The procedure involves selecting the best model in a collection of models based on the one with 
the lowest AIC value.  AICc is the bias corrected form recommended for use when sample sizes 
are small (n/K < 40)  (Burnham and Anderson 2002). AIC is calculated as follows (Burnham and 
Anderson 2002):  

 ( )( )ˆ2 log | 2AIC L y Kθ= − +  (1.12) 

AICc is given as: 
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θ

+
= − + +

− −
 (1.13) 

Knapp and Preisler (1999) in a logistic regression model relating water depth, water velocity, and 
substrate size to spawning sites of golden trout used AIC to determine the relative importance of 
significant variables by adding variables to the model in the order of their associated AIC value, 
such that the independent variable with the largest AIC value was added first and the variable 
with the smallest AIC was added last.  Peterson et al. (2009) developed a habitat model evaluate 
a stream classification system for estimating fish response to changing streamflow.  To identify 
the best approximating model Peterson et al. (2009) fit all possible combinations of the predictor 
variables including quadratic terms and two-way interactions and evaluated the relative support 
for each model using AICc.  McHugh and Budy (2004) used AICc with other methods to choose 
among competing models which evaluated patterns of redd site selection in relation to physical 
habitat variables (depth, velocity, and gravel size) using logistic regression and which habitat 
suitability for two populations of spring Chinook salmon in Idaho. 

It should be noted that AIC selects the best model in a set.  The researcher still must find the best 
collection of models that fits the available data.  That is AIC cannot be considered a substitute 
for a fisheries habitat modeling approach. 

Section 1.6 – Logistic Regression Goodness of Fit Tests 

The logistic regression model is given by 

 
( ) ( ) 0 1 1~ log ... ,

1,..., .
i i i i p ipy Bernoulli with it b b x b x

i n

π π = + + +

=
 (1.14) 

Knapp and Preisler (1999) used 2χ test to evaluate goodness-of-fit of  a logistic regression which 

predicted redd site location.  The goodness-of-fit between the observed and predicted 

probabilities of red presence was determined using a 2χ statistic, which was then compared with 

a 2χ distribution with the required degrees of freedom where a small p value would indicate that 

the model does not provide a good fit to the data.  Since it is not clear which 2χ test the authors 

were actually using some background is given on definitions and procedures of  two of the more 
commonly used logistic regression goodness of fit tests. 

Two standard measures of goodness of fit are the sum of squared Pearson residuals 
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( )
( )

( )
2
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ˆ
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1ˆ ˆ1
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j j j

j j j g x
j
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π
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π π=

−
= = =

+−
∑  (1.15) 
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where  ( )g x is the estimated logit and the deviance  

 ( )
2

1

ˆ,
J

j j
j

D d y π
=

=∑  (1.16) 

where the deviance residual is defined as  

 ( ) ( ) ( )

1/2

ˆ, 2 ln ln ,
ˆ ˆ1
j j j

j j j j j
j j j j

y m y
d y y m y

m m
π

π π

     −   = ± + −     −       

 (1.17) 

where the sign, + or -, is the same as the sign of ( )ˆj j jy mπ− .  D is the likelihood ratio test 

statistic of a saturated model with J parameters versus the fitted model with p + 1 parameters and 
is generally chi-square distributed with J – p – 1 degrees-of-freedom, Hosmer and Lemeshow 
2000.  If J is defined as the number of covariate patterns where a covariate pattern is a distinct set 
of values taken on by the p explanatory variables we may have J < n or J n≈ , the latter case 
often occurring when there are continuous variables.   When J n≈ , p-values for these two 
standard methods of evaluating the goodness of fit of a logistic model are incorrect when using 

the ( )2 1J pχ − − distribution.   Hosmer and Lemeshow (2000) resolved this problem by 

developing the Hosmer-Lemeshow test.  The Hosmer – Lemeshow test is a widely used measure 
of logistic regression goodness of fit and is implemented by many software packages such as 
SAS and STATA.  The test groups the data based on the values of the estimated probabilities. 
There are two ways of grouping: (1) collapse the table based on percentiles of the estimated 
probabilities and (2) collapse the table based on fixed values of the estimated probability.  Using 
g = 10 groups for y = 1 estimated expected values are obtained by summing over the estimated 
probabilities over all sites in each group, the being done for y = 0 where the sum is over one 

minus the estimated probability.  The Hosmer – Lemeshow goodness of fit statistic, Ĉ , is 
obtained by calculating the Pearson chi-square statistic from the g x 2 table of observed and 

estimated expected frequencies.  From Hosmer and Lemeshow (200), ̂C is defined as follows: 

 
( )

( )

'
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=

−∑  (1.18) 

where '
kn  is the total number of sites in the kth group, kc is the number of covariate patterns in the 

kth decile, 
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is the number of responses among the kc covariate patterns, and  

                                                                                  
'

1

ˆ
ˆ

kc
j j

k
j k

m

n

π
π

=

=∑  

is the average estimated probability.  Hosmer and Lmeshow (1980) show that when J = n and the 

fitted logistic regression model is the correct model, the distribution of the statistic Ĉ is 

approximated by the chi-square distribution with g – 2 degrees-of-freedom, ( )2 2gχ −  and claim 

that it is likely that ( )2 2gχ − approximates the distribution when J n≈ . 

A goodness of fit test like one of the above should be an essential feature of any habitat 
suitability model.  The tables of individual observed and predicted values along with their 

2χ values can provide valuable information on where the model fits the data well and where it 

fits poorly.  The Hosmer-Lemeshow test is available as an option in the SAS logistic procedure. 

Section 2 – Non-Parametric Validation Methods 

2.1 – Using New Data to Validate a Model, Cross Validation and Resubstitution 

Resubstitution 

Resubstitution as the name suggests tests the model’s predictability by comparing predictions of 
the observations with the observed data based on the data that was used to fit the model.  This 
technique is somewhat “self  fulfilling” in that since the model optimized over the particular 
structure, error pattern and outliers of the given data, the probability of getting good predictions 
is expected to be higher than testing predicted versus observed values based on independent data 
not used to fit the model.  Using new data to find misclassification error rates is ideal.  A second 
best option is cross validation which leaves out a subset of data, refits the model on the 
remaining data (“training set”) and calculates misclassification rates on the left out data (“test” 
set) (Breiman and Spector 1992). 

Using New Data to Validate a Model 

Castleberry et al. (1996) advocate that an adaptive management approach to assessing model 
adequacy in which active manipulation of flows, including temporary imposition of flows which 
might be harmful be incorporated.  This in essence is a way to come up with new data, possibly 
outside the range of existing data, for model evaluation for boundary conditions. 

Williams (2001) asks the question “How well do the PHABSIM models predict the actual values 
of depth and velocity within the cells.”  The author suggests a  method which is compatible with 
the Instream Flow Incremental Methodology (Bovee et al. 1998), and is applicable to either one 
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or two-dimensional versions of PHABSIM or to other models that combine hydraulic models 
with biological models.  The method is as follows:  select cells in the study reach randomly with 
enough randomly distributed measurements of depth, velocity, substrate or cover within the 
chosen cells to estimate both the means and variances, or other measures of central tendency and 
dispersion, to obtain a given degree of accuracy.  Collect the data over a range of discharges 
since the models may be intended to evaluate habitat over a range of discharges.  Compare the 
estimated means to model predictions.  Display measured and predicted values using scatter 
plots.  Differences between measured and predicted values should be summarized in box plots or 
error dispersion plots as well as by statistical measures.  Predictions of the biological models 
should also be tested and uncertainties in both aspects of the modeling should be reported. 

Thomas  and Bovee (1993) identify a central question: can HSC developed in one stream (the 
source stream ) be used to determine the quality and quantity of microhabitat in another stream 
or different reach  (the destination  stream or reach).  Transferability is defined as the condition 
in which fish should use higher quality microhabitats in greater proportion than they utilize lower 
quality microhabitats, if the HSC have correctly identified high and low quality.  The authors 
describe a technique to test the transferability of habitat suitability criteria.  A requirement is that 
it must be possible to identify a moderate number (e.g., 30-60) of locations occupied by the 
target species in the destination stream or reach, but the authors do not explain how this sample 
size was determined.  The first step in testing criteria is obtaining all of the criteria that are to be 
tested. Next the destination stream is sampled for locations that are either occupied or 
unoccupied by the target organism.  At each sampling site, the following data are collected at 
locations that were or were not occupied by the target species: 

(1)  Occupancy (whether location was occupied or unoccupied), 

(2)  Species and life stage, if occupied, 

(3) Activity, if known (usually not known unless observed directly), 

(4) Depth at sampling location, 

(5) Mean column velocity at location, 

(6) Cover type, if used by target organism (often not known unless observed directly), 

(7) Substrate at location, if applicable to criteria being tested, 

(8) Nose velocity, if applicable to criteria being tested, 

(9) Adjacent velocity, if applicable to criteria being tested, and 

(10)  Distance to cover, if applicable to criteria being tested. 
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  From the habitat suitability criteria, the microhabitat variables for each location can be 
classified as being optimal, usable, suitable, or unsuitable by using the frequency distribution 
method described above.  Once optimal, usable, suitable, and unsuitable ranges for each variable 
have been defined, the composite suitability for each location is classified: 

(1)  For a location to be optimal, all of its microhabitat components (e.g., depth, velocity, and 
substrate) must be optimal, 

(2)  A location is considered usable if one or more of its components is classified as usable, but 
none are classified lower than usable, 

(3) A location is considered suitable if one or more of its components is classified as suitable, 
but non are classified as unsuitable, and  

(4) A location is unsuitable if one or more of its components is unsuitable. 

If the suitability criteria are transferable to the destination stream or reach two conditions should 
be met: (a) there should be proportionately more target organisms in microhabitat classified as 
optimal than microhabitat classified as usable, and (b) there should be proportionately more 
target organisms in suitable microhabitat than in unsuitable microhabitat.  Null and alternative 
hypotheses are tested using 2 x 2 contingency tables and a one sided chi-square test given as: 

 
( )

( )( ) ( )
N ad bc

T
a b c d b d

−
=

+ + +
 (1.19) 

where N is the total number of measured locations, a is the number of occupied optimal 
locations, b is the number of occupied usable locations, c is the number of unoccupied optimal 
locations, and d is the number of unoccupied usable locations.  Suitable locations are substituted 
for optimal locations, and unsuitable for usable to test classifications of suitable and unsuitable 
microhabitat. 

 
Optimal Usable Total 

Occupied a b a + b 
Unoccupied c d c + d 

Total a +c b + d N 
 

For a set of habitat suitability criteria to be considered transferable, both null hypotheses should 
be rejected at the 0.05 level of significance.  Critical values of T are obtained from the normal 
distribution tables (Conover 1980). 

Cross Validation 
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A model validation method recommended by Bovee (1996) and used in many fisheries habitat 
suitability models is the jackknife or leave-one-out cross-validation (LOO).   Olden et al. 2002 
compared re-substitution versus a jackknife approach to model validation of species distribution 
logistic regression classification predictions and found the re-substitution method gave biased 
results whereas the jackknife approach gave relatively unbiased estimates of model performance.  
The estimated rates of model correct classification are shown to be substantially influenced by 
species prevalence (i.e., the proportion of sites at which a species is present).  This can result in 
poorly performing models being viewed as powerful. McHugh and Budy (2004) used LOO to 
test presence absence predictions from a Chinook salmon red site logistic regression model.  The 
authors also used resubstitution and compared error misclassification rates for the two methods 
in which resubstitution classified 76% of the data; cross validation correctly classified 70%. The 
procedure runs as follows: the researcher leaves out one observation at a time refitting the model 
using the remaining 1n− points.  This “training” model is then used to predict the left out point.  
Repeating the procedure over all n observations of the data and summing the n squared leave out 
errors (observed minus leave one out prediction) gives the prediction error sum of squares 
(PRESS).  Better models are those with smaller PRESS values.  PRESS values can be calculated 
without requiring n separate regression runs, each time deleting one of the n cases.  The error 
from omitting the ith case is called the deleted residual and is given by: 

 

 
1

i
i

ii

e
d

h
=

−
 (1.20) 

Where ie is the ordinary residual for the ith case and iih is the ith diagonal element in the hat 

matrix, ( ) 1' '
ii i ih X X X X

−
=  .   

Prediction R2 ( 2
predR ) is the difference between the total sum of squares and the prediction sum of 

squares (PRESS) expressed as a fraction of the total sum of squares in the linear regression case  
and is useful in comparing models across sites and time periods since it is calculated with data 
not included in model calculation.  Some software packages such as R and Minitab offer PRESS 
as part of their regression routine. 

Related to LOO is a method called cross validation.  Cross validation is a data partitioning 
method that can be used to assess the stability of parameter estimates, the accuracy of a 
classification algorithm, and the adequacy of a fitted model (Rizzo 2008).  A researcher can 
partition the data into training test sets.  The model is estimated using the data in the training set 
only, and the misclassification rate is estimated by running the classifier on the test set consisting 
of a subset of the original data.  Similarly, the fit of any model can be assessed by holding back a 
test set from the model estimation, and then using the test set to see how well the model fits the 
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new test data.  A second version of cross validation is “K-fold” cross validation, which partitions 
the data into K test sets (test points).   The data could be divided into any number of K partitions, 
so that there are K test sets.  Then the model fitting leaves out one test set in turn, so that the 
models are fitted K times.  In using cross validation to perform model validation the prediction 
error can be estimated without making strong distributional assumptions about the error variable 
(Breiman and Spector 1992).  An example taken from Rizzo (2008) involves model selection 
from four regression models.  These could be hydrodynamic models used to simulate, predict or 
calibrate discharge, temperature or water quality or microhabitat (Y) from measured data (X): 

 
1.  Linear: 0 1 .Y Xβ β ε= + +  

2. Quadratic: 2
0 1 2 .Y X Xβ β β ε= + + +  

3. Exponential: ( ) ( )0 1log log .Y Xβ β ε= + +  

4. Log-Log: ( ) ( )0 1log log .Y Xβ β ε= + +  

 
Once the model is estimated, we would like to assess the fit.  Cross validation can be used to 
estimate the prediction errors as follows for k-fold (leave out sets of size k) cross validation: 

 
1.  Partition the original sample into K subsamples.   
2. Of the K subsamples, a single subsample is retained as the validation data for testing the 

model, and the remaining K – 1 subsamples are used as training data.  Fit the models and 

compute the predicted responses for the test points 0 1
ˆ ˆˆi iy xβ β= + for example.  Compute the 

prediction error ˆi i iy yε = − . 

3. The cross-validation process is then repeated K times (the folds), with each of the K 
subsamples used exactly once as the validation data. 

4. Compute the estimate of mean of the squared prediction errors 2 2

1

1
ˆ

nk

i
ikn

σ ε
=

= ∑ . 

 
The model which has the smallest mean squared prediction error is the model which has the best 
fit for the data.  Peterson et al. (2009) estimated the accuracy of a large scale channel 
classification model for assessing the potential effects of river regulation and water use on stream 
fish communities by using 10-fold cross validation in which the observations for the “fold” are 
chosen at random.  The data was randomly placed into 10 groups, data from one group were 
excluded, the model was fit with data from the remaining nine groups, and the percent of each 
channel unit type was predicted for the excluded group.  This procedure was repeated for each 
group (10 times) and error was estimated as the difference between the predicted and measured 
channel unit composition.  Peterson et al. (2009) obtained two additional model performance 
measures from the cross validation analysis: bias, estimated as the mean difference, and 
precision as the square root of the mean of the squared differences across samples. 
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In stratified K-fold cross validation, the folds are selected so that the mean response value is 
approximately equal in all the folds.  For example, in a model with a dichotomous dependent 
variable there would be equal numbers of successes and failures in each fold.  Kohavi (1995) 
found in extensive simulations using moderate to large data sets that stratified ten-fold cross 
validation was superior to the leave one out method and was as good as bootstrap methods.  

Breiman and Spector (1992) found in an extensive simulation study that at least 5 folds should be 
used, 10 is best and that cross validation worked as well as the bootstrap in model selection.  A 
heuristic given by Huberty (2006) recommended for presence/absence models is to use a ratio of 
training to testing cases of [1 + (p-1)1/2]-1 where p is the number of predictors. 

Deleted residuals should be plotted versus fitted and independent values in order to determine 
where the model fits poorly and to identify outlying Y observations when ordinary residuals 
would not identify these (Neter et al. 1996). 

Section 2.2 – Bootstrap and Permutation Tests 

Manly (1997) nicely captures the idea of bootstrapping in the following, “The essence of 
bootstrapping is the idea that, in the absence of any other knowledge about a population, the 
distribution of values found in a random sample of size n from the population is the best guide to 
the distribution in the population. Therefore to approximate what would happen if the population 
was resampled it is sensible to resample the sample.” 

Sampling problems for IFIM which use PHABSIM inherent in representing a reach of river with 
a set of transects are considered using bootstrap confidence intervals (Davidson and Hinkley 
1997, Manly 2002, Rizzo 2008) of WUA based on resampling transects within habitat types by 
Williams 1996.  Williams  (1996) samples with replacement from 5 transects each from pool, 
riffle and glide habitats and computes percentile confidence intervals from the bootstrap replicate 
samples.  The bootstrap is used since sample sizes are small and data is non-normal.  The 
replicates vary widely within habitat types and the confidence intervals are extremely wide.  The 
key problem is high variability in measured physical variables within habitat types. Williams 
recommends increased sample sizes, more attention to sample design and more intensive studies 
on ecological relationships between Chinook and its habitat.  Williams states that besides 
considering the number of transects to sample, bootstrap confidence intervals of WUA should 
account for measurement errors at the transects and the variation in the data used in developing 
the suitability curves.  Areas of the stream that might not be sampled due to complex hydraulic 
should also be taken into account.  Location of transects by professional judgment is not 
recommended since there can be no measure of variability in results. In a follow up paper, 
Williams (2009) considers the following model evaluation/validation questions for 1-D models 
using PHABSIM and IFIM: ‘how well do transects represent the study sites, how well do the 
study sites represent the reach and how well does PHABSIM estimate WUA at the transects?’ 



18 

 

Williams used the percentile bootstrap to estimate 95% confidence intervals for WUA curves in 
Cache LaPoudre River 1-D rainbow trout habitat suitability PHABSIM model.  To calculate 
confidence intervals for the set of curves bootstrap replicate samples of the 107 curves were 
drawn with replacement from the original curves, with stratification by habitat type and 
“bootstrap replicate” composite WUA curves were calculated from the bootstrap samples.  A 
similar procedure was used for subsets of the curves.  The procedure was repeated 2000 times 
and for each discharge the interval containing the central 1900 bootstrap replicate composite 
curves was taken as the 95% confidence interval for the estimate of WUA at that discharge.  The 
author was careful to note that the percentile bootstrap is biased for some statistics or datasets 
having extreme outliers (Davison and Hinkley 1997), but for the data used the means and 
medians of the bootstrap samples did not differ much so that an adjustment for bias was not 
necessary.  The transects used in this study were chosen deliberately and are not random 
selections.  Williams admits this and makes the assumption that transect placement approximates 
what would have occurred if the sample transect placements were random.  To simulate errors in 
the WUA estimates, normally distributed random error terms were generated. (Method not 
given).  The error terms had a mean of 0 and standard deviation of 5 or 10% of the corresponding 
WUA value, so that, WUA estimates were unbiased, and about two-thirds of the resulting WUA 
values were within 5 or 10% of the assumed ‘true’ values.  The author acknowledges that the 
modeled errors were ‘probably smaller than the errors in actual PHABSIM studies.  The effect of 
changes in sample size (i.e. the number of WUA curves) was investigated by: ‘(1) bootstrap 
samples of reduced size were selected from the full set of transects, with appropriate numbers of 
curves from each habitat type, or (2) subsets of the curves were selected, with appropriate 
numbers of curves from each habitat type, and bootstrap samples were drawn from the subsets.’  
The first approach allows confidences intervals to be comparable over the range of discharge 
values while second approach which is more realistic such that means and confidence intervals 
vary from subset to subset so that the results are compared graphically at a single discharge. 
Results Williams (2009) showed that the bootstrap and conventional confidence intervals were 
nearly identical with the bootstrap intervals slightly higher (possibly the result of the random 
selection assumption).  In the alternate case, when bootstrap sampling was stratified by habitat 
category the bootstrap confidence intervals were narrower than the conventional intervals.  
Williams attributes this to the skewed distribution of WUA values in some habitats.  In summary 
Williams (2009) found that confidence intervals around the composite WUA curves are 
moderately wide (28% of the mean at the peak for the juvenile curve, 18% for the adult curve), 
and particularly if errors in the WUA curves are considered, the shape of the composite curve 
and the slope of the curve at a fixed discharge can be very uncertain.  The uncertainty or variance 
increases as sample size decreases, and with the usual number of transects used in PHABSIM 
models, it was in general large, even if WUA at the transects was estimated without error.  
Williams recommends that bootstrap confidence intervals be used to estimate the uncertainty in 
HSC by similar methods as used for WUA. Williams admits that his study does not simulate the 
uncertainty arising in most PHABSIM studies from grouping transects within study sites, and 
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extrapolating these results to a much longer reach so that his analyses greatly underestimate the 
statistical uncertainty inherent in most PHABSIM studies.  William urges researchers to use 
random sampling or random proportional sampling to select transects as these will be 
representative of the infinite population of all transects and that researchers should determine 
appropriate sample sizes to achieve desired level of model precision before data collection.  
Manly (2009) is given as a reference to a way to achieve this using results from completed 
PHABSIM studies. 

Vaughn and Ormerod (2005) recommend the following method to evaluate model overfitting 
using the bootstrap: 

1. Estimate accuracy statistic in the training data. 
 2. Generate a bootstrap of equal size to the training set by sampling training data with    
replacement. 
3. Fit the model in the bootstrap using the same methods as employed to fit it in the original 
training data; this includes the same variable selection strategy, where applicable 
4. Estimate the accuracy statistic within the bootstrap resample. This simulates an accuracy 
estimate made with the training data 
5. Using the same model as in step 4, predict the species distribution in the original training set 
and estimate the accuracy 
statistic. This simulates the use of independent test data 
6. Overfitting = (training data estimate in step 4) – (test data estimate in step 5) 
7. Repeat steps 2– 6 for 100–200 bootstraps. Average the values calculated in step 6 to provide 
the overall estimate of overfitting 
8. Subtract overfitting estimate from the training data estimate in step 1 to provide an optimism-
corrected value. 

The non-parametric model-based bootstrap (Davison and Hinkley 1997, Manly 1997, Efron and 
Gong 1983, Efron 1982) may be used to obtain unbiased estimates of R2, mse, standard errors 
and confidence intervals of coefficients and prediction intervals when there is confidence that the 
model is specified correctly (constant error variance model) (Efron1982, Davison and Hinkley 
1997) .  The bootstrap is also a good choice for regression evaluation when sample sizes are 
small and it is difficult or impossible to determine whether or not errors are normal (Davison and 
Hinkley 1997, Manly 1997, Williams 2000).  The bootstrap generates random samples from the 
empirical distribution of the sample.  The model-based resampling in linear regression algorithm 
proceeds as follows (Davison and Hinkley 1997): 

 

For r = 1, . . . , n, 
1 For j = 1, . . . , n, 

(a) set * ;j jx x=  

(b) randomly sample *jε from 1 , , ;nr r r r− −K then 
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(c) set * *
0 1

ˆ ˆ .j j jy xβ β ε= + +  

2 Fit least squares regression to ( ) ( )* * * *
1 1, , , , ,n nx y x yK giving estimates 

* * *2
0 1,

ˆ ˆ, , .r rsβ β  

where s is the regression mse. 
 
A different approach should be taken when error variances may not be constant and the data is a 
sample from some multivariate distribution (X, Y).  Here there is no assumption on the random 

errors jε other than independence and we resample cases.  The algorithm proceeds as follows 

(Davison and Hinkley 1997): 

 
For r = 1, . . . , R, 

1 sample * *
1 , , ni iK  randomly and with replacement from { }1,2, ,nK ; 

2 for j = 1, . . . , n, set * *

* *,j ji i
x x y y= = then 

3 fit least squares regression to ( ) ( )* * * *
1 1, , , ,n nx y x yK giving estimates 

* * *2
0 1,

ˆ ˆ, , .r rsβ β  

 
Since regression may be used to predict new values of discharge (not included in the available 
data) for input to the final IFIM model a method is needed for evaluating the precision of these 
predictions.  Bootstrap prediction errors can be used when the above linear regression model 
assumptions are suspect.  Davison and Hinkley advise using the following bootstrap procedure 
for the constant error variance case when M new observations are to be predicted: 

 
For r = 1, . . ., R, 

1     simulate responses *ry according to the model-based resampling algorithm above; 

2         obtain least squares estimates ( ) 1* *ˆ ;T T
r rX X X yβ

−
=  then 

3     For m = 1, . . . , M, 
(a) sample *

, 1 , , ,m nfrom r r r rε+ − −K and 

(b) compute prediction error ( )* * *
,

ˆ ˆT T
rm r mx xδ β β ε+ + += − +  

where the quantity to be predicted is TY x β ε+ + += + and the point predictor is  ˆˆ TY x β+ +=  where the 

prediction error is estimated by (b) above.  + indicates a new point to be predicted.  A 

( )1 2α− prediction interval for Y+ is estimated by the empirical quantiles of the pooled * 'sδ .  

The bootstrap prediction limits are  
 

 ( )( )( ) ( )( )
* *

1 1 1
ˆˆ ˆ ˆ, .T

RM RM
y y where y xα αδ δ β+ + + ++ − +− − =  (1.21) 
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Of course parametric asymptotic prediction intervals can be computed in the usual manner when 
regression assumptions are met (Neter et al. 1996, Mendenhall and Sincich 2004).  Most 
software packages offer this option as a standard feature of the regression function. 

A permutation test (randomization test) is a type of statistical significance test in which a 
reference distribution is obtained by calculating all possible values of the test statistic under 
rearrangements of the labels on the observed data points.  From Manly (2009) a two sample test 
of the difference in randomization test proceeds as follows: 

1. The observed absolute mean difference is labeled d1. 

2. 2. It is argued that if the null hypothesis is true (the two samples come from the same 
distribution), then any one of the observed values x1, x2, . . . , xm and y1, y2, . . ., yn could 
equally well have occurred in either of the samples.  On this basis, a new sample 1 is 
chosen by randomly selecting m out of the full set of n + m values, with the remaining 

values providing the new sample 2.  The absolute mean difference 2d x y= − is then 

calculated from this randomized set of data. 

3. Step 2 is repeated a large number of times (R – 1) to give a total of R differences d1, d2, . . 
,dR. 

4. The R differences are put in order from the smallest to largest. 

5. If the null hypothesis is true, then d1 should look like a typical value from the set of R 
differences, and is equally likely to appear anywhere in the list.  On the other hand, if the 
two original samples come from distributions with different means, then d1 will tend to 
be near the top of the list.  On this basis, d1 is said to be significantly large at the 100α % 
level if it is among the top 100α  % of values in the list.  If  100α  % is small (say 5% or 
less), then this regarded as evidence against the null hypothesis. 

If the labels are exchangeable under the null hypothesis, then the resulting tests yield exact 
significance levels (Davison and Hinkley 1997).  In Olden et al. (2002) Empirical data is used to 
introduce a randomization approach for assessing whether the performances of the fish habitat 
models are statistically greater than expectations based on chance predictions.  The test requires 
creating a null distribution of correct classification rates (CCRs) for a given species by randomly 
permuting the original observations of occurrences among the lake or stream sites, conducting 
logistic regression analysis using the randomized species occurrence and the original 
independent variables, and calculating the jackknifed CCR.  The procedure was repeated 999 
time and the significance level of the predictive model  was calculated as the proportion of 
random CCRs (including the observed CCR) that were as great or greater than the observed 
CCR. 
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Permutation tests can be applied to a wide variety of problems including testing for differences 
between parameters from two or more distributions, (Davison and Hinkley (1997), Edgington 
and Onghena (2007), Manly (2009)) and so it is surprising not to find it used more frequently in  
fisheries habitat modeling studies. The randomization test has an advantage over a nonparametric 
test like the Mann-Whitney U-test because it allows the original data to be used rather than just 
the ranks of the data (Manly 2009). 

Section 2.3 – Rank Tests, Chi-squared, Tests Using a Confusion Matrix, ROC Curves 

In a study comparing spawning habitat predictions of PHABSIM and River2D models, Gard 
(2009), used the Mann Whitney U test to test for each river and in the case of the Sacramento 
River for each race of Chinook salmon, if there was a significant difference in the composite 
suitability index (CSI) predicted by PHABSIM for occupied versus unoccupied cells, and if there 
was a significant difference in the CSI predicted by River2D for occupied versus unoccupied 
locations.  Kolmogorov-Smironov tests were conducted for each site for each set of suitability 
criteria to test if there was a significant difference between the PHABSIM and River2D flow-
habitat relationships.  Here the statistic being tested is the median.  Knapp and Preisler (1999) 
conducted the non-parametric rank based Kruskal – Wallis one-way analysis of variance to test 
for differences in habitat characteristics associated with cells used and not used by spawning 
golden.  The authors used the Kruskal-Wallis test because the data was not normally distributed, 
had unequal variances, and normality and variance equivalency could not be accomplished using 
standard transformations.  The Mann-Whitney U-test has been applied in a number of model 
evaluation settings when sample sizes are small and the normality assumption has not been met 
yet the data distribution is symmetric (Gard 2009, McHugh and Budy 2004).  The Mann-
Whitney U-test was used by McHugh and Budy (2004) to compare the depth, velocity, and 
gravel size (D84) values at sites that were used for spawning during 2001 with those for sites that 
were not used. 

Spearman’s rho (rs) is a rank based non-parametric correlation coefficient that assesses how well 
an arbitrary monotonic function could describe the relationship between two variables , without 
making any other assumptions about the particular nature of the relationship between the 
variables (Conover 1980).  In Gallagher and Gard (1999) a variation of Spearman’s rho called 
gamma that adjusts for data with many ties was employed to determine if there was a 
relationship between Chinook salmon spawning density and predicted WUA at the mesohabitat 
level in the Merced River. 

Evaluation Indices Using a Confusion Matrix – Hirzel et al. 2006 

Hirzel et al. (2006) review and compare indices based on presence/absence information include 
Cohen’s Kappa, Kmax, AUC, and adjusted D2 in the context of evaluating generalized linear 
models applied to habitat suitability data.  These methods index the degree of agreement between 
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prediction and data.  The first step is to choose a habitat suitability (HS) threshold which is 
intended to separate unsuitable areas where the species or redd should be absent, from suitable 
areas (HS greater than threshold) where it should be present.  A confusion matrix is created 
which enumerates how many presence and absence evaluation points occur in the suitable and 
unsuitable areas, Figure 1.  Other methods using this matrix are described in Fielding and Bell 
(1997).  Among the evaluators based on this matrix is the Cohen’s Kappa index K (Agresti, 
1990) which is computed as follows: 
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Where x and N are counts of evaluation points as defined in Fig. 1.  K varies from -1 to 1, high 
values indicating a good agreement between prediction and data, and 0 corresponds to random 
agreement.  The results obtained from this method depend on the threshold value that the user 
chooses.  Methods which do not depend on a threshold include Kmax  and area under the curve 
(AUC).  Kmax is the highest Kappa for threshold values from 0 to 1.  AUC is found by plotting, 
for threshold values from 0 to 1, the proportion of true positive x11/x1 against the proportion of 
false positives x12/x.2.  One computes the area under the curve where an AUC of 0 indicates 
worse-than-random model, 0.5 (random model) and 1 (best model possible).  

 

    Observed Margin 
    Presence Absence sums 
Predicted Presence  X11  X12  X1. 
  Absence  X21  X22  X2. 
Margin sums  X.1  X.2  N 
 

Fig. 1 Contingency table  of the model predictions against the actual observations.  The xij 
represent counts of evaluation points, with N = Σxij. (taken from Hirzel et al. 2006). 

Boyce et al. (2002) found a way to relax somewhat the threshold constraint.  Their method 
consists in partitioning the habitat suitability range into b classes (or bins), instead of only two.  
For each class i, it calculates two frequencies: (1) Pi , the predicted frequency of evaluation 
points: 
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Where pi is the count of evaluation points predicted by the model to fall in the habitat suitability 

class i and jp∑ is the total number of evaluation points; (2) Ei, the expected frequency of 

evaluation points, that is, the frequency expected from a random distribution across the study 
area.  This is given by the relative area covered by each class: 
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where ai is the number of grid cells belonging to habitat suitability class I, or area covered by the class I, 

and ia∑ is the overall number of cells in the whole study area.  For each class I, the predicted-to 

expected (P/E) ratio Fi is given by 
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If the habitat model adequately identifies the species suitable areas, a low suitability class should 
contain fewer evaluation presences than expected by chance, resulting in Fi < 1.  On the other 
hand, high suitability classes should have Fi increasingly higher than 1.  The plot of P/E against 
the mean habitat suitability of each class provides an easily accessible interpretation tool.  Thus a 
good model should show a monotonically increasing curve, i.e. Fi increasing as suitability 
increases.  Boyce et al. (2002) rate this monotonic increase by the Spearman rank correlation 
coefficient between Fi and i.  This index varies from -1 to 1.  Positive values indicate a model for 
which predictions are consistent with the presences distribution in the evaluation dataset, values 
close to zero indicate that the model is unlikely to be different from a random model, negative 
values indicate an incorrect model, which predicts low quality areas where presences are more 
frequent. Hirzel et al. (2006) modified the “Boyce Index” by Precision of the Spearman rank 
correlation could be achieved non-parametric confidence intervals through a randomization 
procedure or bootstrapping (Efron and Gong 1983, Manly 2009). 

Section 3 –The Conceptual Model as a Basis for Validation and Evaluation 

Section 3.1 

An effective approach to model evaluation and validation should depend on the underlying 
conceptual model.  

Ahmadi-Nedushan et al. (2006) describe and compare the following habitat suitability modeling 
estimation frameworks: multiple regression, logistic regression, logistic regression, generalized 
linear models, generalized additive models, artificial neural networks, fuzzy rule based modeling 
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and principal components with respect to their strengths and weaknesses.  The authors report on 
several comparative studies and indicate that artificial neural networks show promise.  

Castleberry et al. (1996) would require those using PHABSIM to construct model evaluation and 
validation that considers the following issues:  (1) sampling and measurement problems 
associated with representing a river reach with selected transects and with the hydraulic and 
substrate data collected at the transects; (2) sampling and measurement problems associated with 
developing the suitability curves; and (3) problems with assigning biological meaning to 
weighted usable area (WUA), the statistic estimated by PHABSIM.  

Kondolf et al. (2000) point out the potential problems associated with errors related to different 
spatial scales used in hydrodynamic and biological model components.  The conceptual model 
for PHABSIM assumes that the data obtained from the transects represents half-way upstream or 
downstream to the next transect.  With this conceptual model, the authors point out, validation 
consists of measuring the depth, velocity, and substrate at random points in the study reach at 
alternated discharges and comparing these measurements with the values PHABSIM predicted 
for those points, where validation should include the habitat variables as well as the WUA.  
Kondolf et al. 2000 state that if the conceptual model for transect data are treated as samples 
stratified by habitat types rather than as representing specific areas of the channel, validation will 
depend on the specifics of the sampling design, but the process will remain the same: model 
predictions of the joint distributions of depth, velocity, and substrate would have to be compared 
with independent data.  If transect sites are chosen randomly, they will give an unbiased estimate 
of conditions in the study reach, ‘so that models can be validated at the transects and the 
streamwise spatial sampling errors estimated separately using statistical methods such as 
bootstrapping’.  Kondolf et al. 2000 urge researchers to report estimates of WUA with standard 
errors or confidence intervals so that all stakeholders are aware of the uncertainty associated with 
the estimates. 

The choice of model tests should be made in the context of how the model will be applied 
(Fielding and Bell 1997).  The authors state that if the objective is to conserve habitats with high 
opportunity costs the model should accurately predict species presence.  If the model is to be 
used to predict impacts for endangered species false positives may be more critical.  Fielding and 
Bell put forth the following guidelines: 

(1) Decide which data are to be used for the estimation of error.  Do not rely on an estimate 
based on resubstitution of the training data.  A more robust estimate will be obtained 
from independent testing data. 

(2) If predictions are to be restricted to a homogeneous region consider a data-partitioning 
technique.  If the predictions are to be tested for their generality use a prospective sample 
selected via temporal or geographical criteria. 
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(3) If data-partitioning is to be used consider using more than one approach, ideally including 
k-fold partitioning or jack-knifing.  When deciding on a size for the training set use  a 
heuristic such as that suggested by Huberty (2006), but also take into account any 
cases:variables constraints imposed by classifier. 

(4) Understand the nature of any error measures that are used. 

(5) If you wish to determine if a classifier predicts better than chance, use a measure such as 
Kappa or NMI.  Recall that NMI is less affected by prevalence. 

(6) ROC plots avoid the problems associated with threshold effects.  If error is to be based 
solely on confusion-matrix-derived measures consider adjusting the threshold.  It is 
desirable to use a priori criteria for deciding on a threshold. 

(7) If classifiers are to be ranked, comparisons based on ROC plots are likely to be more 
robust since they are independent of the values in a confusion matrix. 

(8) If the aim is to improve within-region accuracy consider using spatial analysis methods 
that incorporate the almost inevitable spatial autocorrelation. 

(9) If the aim is to improve the predictive success with prospective samples, based on a 
different region, an attempt should be made to remove the spatial structure from the 
models. 

Additional suggestions by Fielding and Bell (1997) include: if appropriate examine the spatial 
pattern of the errors and consider using, with caution, post-hoc hypotheses to interpret the 
patterns; consider weighting errors if there are ecological or economic justifications; be cautious 
of any statement of model accuracy that does not justify the choice of error measure; if after 
model validation, the aim is to derive a robust classification rule, all of the available data should 
be used. 

Guisan and Thuiller (2005) discuss the importance of matching the resolution or spatial scale at 
which sampling takes place and that of the resolution that predictions are to be made. 

Evaluating the relevance of composite suitability indexes as a probability of use measure is 
considered in a test procedure described by Williams (2009b).  For each model and site, order all 
cells by CSI, and divide them into ranks by CSI.  Then, plot the percentage of all cells in each 
rank that are used over the mid-point of its range.  Thus, with ten ranks, the percentage of cells 
with CSI that are greater than 0.9 that are used would be plotted over 0.95, the percentage of 
cells with CSI > 0.8 and ≤ 0.9 that are used would be plotted over 0.85, etc. Confidence intervals 
for the plots could then be estimated by bootstrapping (Effon 1982, Manly 1997, Davison and 
Hinkley 199 ).  If the CSI is a kind of resource selection function, then the plot should 
approximate a straight line.  This line should lie on the diagonal if the percentage of occupied 
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cells is scaled by the constant of proportionality between the value returned by the function and 
the probability that the cell will be used.  If instead the CSI is an index of suitability rather than 
of probability of use, then the percentage of used cells should increase sharply at higher CSI 
values (Freeman and Moisen 2008), since fish should select the most suitable spawning habitat 
available.  If neither of these conditions obtains, then either the hydraulic model has not 
performed well, or the utility of the index should be questioned. 

Section 4 – Analysis of Residuals and Model Deviations – Graphical and Numerical Methods 

Section 4.1 – Histogram, Normal Probability Plots 

Many of the journal articles reviewed performed some sort of inspection of model residuals in 
order to accomplish one or more of the following: determine model fit, identify outliers, check 
for independence, normality and non-constant errors.  Peterson et al. (2009) assessed goodness of 
fit of the global (all predictors) model by examining residual and normal probability plots.  They 
also looked for potential temporal dependence by inspecting plots of residuals ordered by sample 
date for each sample site.  If there was no trend in the residuals, they assumed that there was no 
temporal dependence.  To check for goodness of fit of logistic regression models and Poisson 
regression models Peterson et al. (2009) examined residual and normal probability plots.  Geist 
et al. (2000) used refined nearest-neighbor analysis on digitized Chinook redds to determine 
whether fall Chinook salmon redds were randomly distributed or if they followed a uniform or 
clustered pattern.  The spatial pattern analysis was also used to determine the distance between 
redds within any given pattern type.  ‘Refined nearest-neighbor analysis (Boots and Getis 1988) 
makes use of the cumulative distribution F(d) to characterize the probability that the nearest 
neighbor to a red is within a given distance d.’  Given a random spatial distribution generated by 
a Poisson process, Geist et al. (2000) give the expected cumulative distribution function as  

 ( ) 2

1 , 0dF d e dλπ−= − ≥  (1.26) 

Where λ is the intensity of the points within the area, estimated by /n Aλ = for n points in the 
area A.  The empirical cumulative distribution of distances was calculated from the data set for 
each distance d and compared with the expected value for that distance.  They generated a Monte 
Carlo confidence envelope around the expected value for each distance d.  The empirical 
cumulative distribution determined from the data is compared with the confidence interval for 
each d: if the proportion of the nearest neighbors less than distance d is outside the confidence 
envelope, then the hypothesis that the spatial pattern of the data points resulted from a random 
process is rejected at the 95% confidence level.  The direction of the deviation above or below 
the confidence envelope indicates whether the non-uniform pattern was closer to a clustered or 
uniform distribution, respectively. 

Section 4.2 – Run Charts 
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Run charts plot residuals or prediction errors versus location or time and are used to identify 
places in the model where there is lack of fit or lack of independence (Vardeman and Jobe 1999). 

Section 4.3 – Standardized Residuals, Prediction Error, Fitted vs Observed, Outliers, Fitted vs. 
Independent Variables 

Standardized regression errors should be plotted against predicted values and against the 
independent variable to check for unequal error variances, outliers, lack of independence, bias 
and model misspecification (Neter et al. 1996).  Bias in the predicted values may be indicated if 
the residuals show a consistent pattern above or below the zero line and unequal error variance 
(dispersion) may show up as a fan shaped pattern in the residual plot against the fitted values 
(Mendenhall and Sincich 2004).   A histogram of errors should indicate that the distribution of 
errors are approximately normally distributed.  Departures from normality in linear models can 
also be checked by normal probability plots.  Here each residual is plotted against its expected 
value under normality.  A plot that is nearly linear is evidence for agreement with normality, 
whereas a plot that departs significantly from linearity is evidence that the distribution is not 
normal (Neter et al. 1996).  Residuals from any type of model should also be plotted against 
variables omitted from the model that might have important effects on the response.  For 
example, plotting residuals against a time variable or location variable can indicate if there is 
spatial or temporal independence.  Correlegrams and bubble are useful plots for identifying lack 
of special independence (Zuur et al 2009).  The Durbin-Watson test for autocorrelation is a good 
test for autocorrelated residuals where the null hypothesis that values of residuals are not 
dependent of the magnitude of the residual at the previous time step is to be tested (Mendenhall 
and Sincich 2004).  For a situation in which linear models and generalized linear models are 
suspected of requiring random effects terms, boxplots are helpful.  For example, when 
observations within sites may be dependent, box plots of standardized residuals grouped by sites 
are useful (Pinheiro and Bates 2000, Zuur et al. 2009).  These boxplots should center around the 
zero line if a random effects term for site is not needed.  The need for a random effects slope 
term may be assessed by comparing plots of residuals or fitted values from the random effects 
for slope model with plots of residuals or fitted values from the model without a random effects 
term for slope when these plots are grouped by site (Zuur et al. 2009).  Alternatively, AIC and 
likelihood ration tests can be used (Pinheiro and Bates 2000). 

Section 5 – Simulation – Monte Carlo, Sensitivity Analysis and Fuzzification 

Section 5.1 – Monte Carlo 

To verify physical microhabitat accuracy and precision error analysis and model validation 
should be done on sample measurements of physical variables taken over a wide variety of 
streamflows (Bovee 1996).  This data may be difficult or too costly to obtain.  Monte Carlo 
simulation in which data is simulated using expected parameter values may be input to the model 
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for model evaluation (Bovee 1996). Monte Carlo simulation has the advantage that there is no 
limit to the model hypotheses, sample sizes and data distributions that can be used for model 
testing.   

For example sample size requirements to achieve a given level of accuracy and precision of 
mode output for a prospective study might be determined by simulating data having variable 
levels of error in each variance component associated with each stage of model building and 
fitting the model for several alternative sample sizes until the right combination of error and 
sample size is found to match the researchers required level of accuracy and precision.  Worst 
case and best case scenarios could be developed.  

 Section 5.2 - Sensitivity Analysis 

Some variables such as temperature may require a large number of independent variables to 
make model predictions of new temperatures at different locations and times for the same and 
new independent variable settings.  Multiple regression models used to make these predictions 
can be assessed for adequacy using the model goodness of fit, evaluation and validation 
measures discussed above for discharge.  In addition, in order to evaluate models during the 
variable selection or calibration stage, Bovee (1996) advocates conducting a sensitivity analyses.  
A sensitivity analysis is a test of a model in which the value of a single variable or parameter is 
altered, and the result of the change on the dependent variable is observed.  The process can be 
carried out one variable at a time or in groups if it is thought that interaction effects may be 
important.  In one method the investigator changes the value of each parameter or variable by a 
fixed percentage during each trial (Fuller 1987, Bovee 1996).  Sensitivity analysis provides 
useful information on model adequacy to all stakeholders in the modeling effort.  The effects of 
errors in each of the variables and parameters on the dependent variable can be assessed.  This 
information permits the researcher to identify sensitive (insensitive)  variables (those which have 
a large (small) influence on the dependent variable temperature) that must be reliably estimated 
or for which larger errors can be allowed to occur (Fuller 1987, Bovee 1996). 

Section 5.3 - Fuzzification 

Fukuda (In Press) and Fukuda and Hiramatsu (2008) used a technique known as fuzzification in 
evaluating alternatives among fish habitat preference models.  The effectiveness of the 
fuzzification in fish habitat modelling was assessed by comparing mean square error and 
standard deviation of the models, and fluctuation in habitat preference curves evaluated by each 
model. As a result, the effect of fuzzification appeared as smoother curves and was found to 
reduce fluctuation in habitat preference curves in proportion to the level of fuzzification. The 
smooth curves would be appropriate for expressing uncertainty in habitat preference of the fish.  
Fuzzification is the process of transforming discrete values into grades of membership for the 
purpose of inclusion into a model training set. 
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CONCLUSION 

Fisheries habitat models serve three major purposes: to predict species occurrences using 
physical and biological variables, to increase the understanding of species-habitat relationships 
and to quantify habitat requirements.  The use of quantitative statistical models to predict the 
probable occurrence or distribution of species based on relevant key variables is becoming an 
increasingly important tool in conservation strategy and fishery management. 

This literature review has identified and summarized some of the recent and past contributions to 
evaluating and validating chinook habitat models found in the literature as well as fisheries 
habitat modeling journal articles for which the model evaluation techniques used could be 
considered applicable to chinook salmon habitat modeling.  Attention has been given to defining 
key algorithms and equations where these may not be apparent to the reader. 

This survey has indicated that there exists a wide variety of models and modeling frameworks 
within which researcher have viewed the problem of predicting fish distribution and distribution 
of fish spawning sites.  Equally diverse are the methods used to evaluate and validate these 
models.  Nonparametric methods have gained popularity in recent years.  Methods such as cross 
validation and bootstrapping are appropriate for their lack of distributional assumptions though 
traditional methods such as hypothesis testing and rank based tests are still commonly applied. 

New estimation techniques such as artificial neural networks and fuzzy rule based modeling 
show promise and have simulation based evaluation and validation components. 
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Table 2.  Index for Chinook salmon habitat model evaluation and validation literature. 

 
Evaluation/Validation Section Objective Page 

 
 

Method 
 

of Test 
 

 

P
a

ra
m

e
tr

ic
 

Correlation 1.1 Advantages, Disadvantages, p-values, C.I.'s. 2 - 6 

 Pearson CC 1.1 Linear Assoc. between 2 vars., Test multicollinearity, Eval. Input,vars. 
 

 R2 1.1 GOF, Model comparison, Prop. of variation explained. 
 

 Multiple R2 1.1 GOF, Model comparison, Prop. of variation explained, resub. 
 

 R2adj 1.1 GOF,Adjusted for resub. Bias, Model comparison, resub. 
 

 Multiple CC 1.1 Conditional CC. Between vars. When 1 or more accounted for. 
 

 r2 - Logistic Reg 1.1 GOF, Correlation coefficients for logistic reg., overall measure of fit. 
 

 P-values 1.2 Probability of more extreme test statistic under null, Critique of. 7, 8 

 t-tests, ANOVA 1.3 Tests for 2 or more popln. means, Test diff. between phys. habitat vars. 8, 9 

 Paired t-tests 1.3 Evaluate diff. between model vars., data are paired time or space. 
 

 t- tests of Reg Coeff 1.3 Determine sig. of regression coeffs. or diff. with fixed value. 
 

 Mean Squared Error 1.3 Measure residual unexplained error. Compare models. 
 

 F-tests 1.3 Compare nested models, Overall sig. of a linear model. 
 

 Likelihood Ratio 1.4 Model comparison using loglikelihood values, uses Chi-sq. test stat. 9 

 ANCOVA 1.4 Test reg. slopes when continuous and categ. vars. in model. 9 

 Confidence Intervals 1.4 Prob. intervals for popln. parameters where alpha is specified, test sig. 9 

 Prediction intervals 1.4 Prob. intervals to predict a new value of dependent var. 9 

 CI's for Reg Coeff 1.4 Prob. Intervals for reg. coeffs., Test sig. of param., Eval. effect size. 9 

 AIC, AIC_c 1.5 Akaike information, Model selection, comparison, variable ranking. 9, 10 

 AIC Confidence Set 1.5 Best subset of models among all in set; based on information theory. 9, 10 

 Hosmer-Lemeshow 1.6 Logistic reg. GOF test based on predicted and obs.values, uses Chi-sq. 10-12 
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Evaluation/Validation Section, Objective Page 

 
Method Page of Test 

 

N
o

n
-P

a
ra

m
e

tr
ic

 

New Data 2.1 Test model results on new set of data, less biased. 12-17 

Resubstitution 2.1 Hold out some data from model fitting on which to test the model pred. 12-17 

Jacknife - LOO CV 2.1 Leave-one-out CV, performance measure can be pred. errors. 12-17 

K-fold CV 2.1 Test model predictability on K subsets of left out data. 12-17 

Stratified K-fold CV 2.1 Same as K-fold but subsets all have same mean response. 12-17 

Bootstrap SE 2.2 Empirical SE's calculated from replicate samples, (with repl. Resampling). 17-22 

Bootstrap CI's 2.2 Emp.percentiles of resampling statistic, (case sampling, or model based). 17-22 

Bootstrap P.I's 2.2 BS prediction intervals.  Evaluate error in predicting new popln. value. 17-22 

Randomization 2.2 Exact tests; Almost any test can be subject of method to obtain p values. 17-22 

Mann Whitney 2.3 2 sample difference in medians; requires symmetric distributions use rank 22 

Kolmogorov Smirnov 2.3 Used to test differences in two distributions. 22 

Chi-squared 2.4 Test independence among counts grouped by categories. 24 

Confusion Matrix 2.4 Error classification matrix; basis of error classification prediction tests. 24 

Cohen's Kappa 2.4 Test rate of correct predictions. 24 

Max Kappa 2.4 Test rate of correct predictions. 24 

ROC Curves 2.4 Test rate of correct predictions. 24 

Spearman CC 2.3 Test rate of correct predictions. 24 

O
v

e
rv

ie
w

     
Conceptual Basis 3.1 Develop strategy of evaluation/validation based on conceptual model 24-27 

Suitability Index 3.1 Test to determine if HIS is likely to be an index or probability. 24-27 
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Evaluation/Validation Section, Objective Page 

 
Method Page of Test 

 

A
n

a
ly

si
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o
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R
e
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d

u
a

ls
 

Histogram 4.1 Normality of errors 27, 28 

Normal Probability Plot 4.1 Normality of errors 27, 28 

Run Charts 4.2 Test for temporal independence by looking for runs of pos or neg resids. 27, 28 

Stand.Residual 4.3 Normalize residuals to express as standard deviation units. 27, 28 

Prediction Error 4.3 Measure of degree of accuracy of model predictions. 27, 28 

Fitted vs Observed 4.3 Plots to inspect for places where the model fits or does not fit observed. 27, 28 

Outlier plots 4.3 Plots to determine locations of outlying points. 27, 28 

Fitted vs. Covariates 4.3 Plots to determine model misspecification. 27, 28 

    

S
im

u
la

ti
o

n
 

Monte Carlo 5.1 Examine model properties by testing with simulated data. 28, 29 

Sensitivity Analysis 5.2 Shift parameter values to explore sensitivity of model output to changes. 28, 29 

Fuzzification 5.3 Type of sensitivity analysis. 28, 29 
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Red Bluff Interim Pumping Plant Screens Hydraulic Evaluation  



Results From Initial Hydraulic Evaluation Of Cone Screens At 
Tehama Colusa Canal Authority’s Interim Pumping Plant,  
June 1 – 12, 2009, Red Bluff, California  

Team of evaluation participants: 

 Steve Thomas, P.E., National Marine Fisheries Service (NMFS)   
 Robert Hughes, P.E., California Department of Fish and Game (CDFG)  
 Mark Gard, Ph.D., U.S. Fish and Wildlife Service (USFWS)  
 Josh Gruber, USFWS  

Background  
The interim pumping plant was designed and built as a stop gap measure to divert water 
from the Sacramento River to the Tehama Colusa (TC) Canal in response to an expected 
mandate calling for delaying “gates in” operation of the Red Bluff Diversion Dam until 
June 15 annually during the 2009 through 2011 period.  Previously, the dam gates were 
lowered on May 15 of each year to provide a gravity diversion of up to 2,500 cfs to the  
TC Canal. A new diversion facility, including a new flat-plate fish screen to 
accommodate water needs of the TC Canal water users without the need for lowering the 
RBDD has been designed and construction will begin in mid-2010.  The new facility will 
allow normal flows to be supplied to the TC Canal via pumps making the diversion dam 
obsolete and is expected to be operational in the spring of 2012. The interim project 
intended to be used in concert with other facilities to provide water to the canal during 
annual “gates out” operation of the Re Bluff Diversion Dam for three consecutive years 
until the new long term pumping plant diversion facility is operational.  
 
The interim pumping plant has ten vertical pumps each with a design capacity of 50 cfs.  
(Figure 1) Pumps are paired to feed five, 36 inch conveyance pipes that lead to the 
settling basin at the head of the TC Canal.  Each pump is screened with a 14 ft diameter 
conical fish screen manufactured by Intake Screens, Inc (ISI).  Each screen has a total 
surface area of approximately 180 square feet and has a rotating brush cleaning system 
for debris removal that operates on a programmable timer.  Conical screens were 
developed to operate in tidal and back water areas where water depths are shallow and 
there is no dominant current in the water body.  They were chosen for this project based 
on the shallow water conditions at the proposed site even though it was doubtful that 
approach and sweeping velocity criteria could be met with this screen design1.  A 
condition of accepting the proposed design was that a hydraulic evaluation would be 
carried out to determine whether or not the cone screens could be operated in 
conformance with the State and federal fish screening criteria2.

                                                 
1 NMFS fish screen criteria document, Fish Screening Criteria for Anadromous Salmonids (1997) states, 
“screen design must provide for uniform flow distribution over the surface of the screen, thereby 
minimizing approach velocity.”  The CDFG document, Fish Screening Criteria (June, 2000) states, “[t]he 
design of the screen shall distribute the approach velocity uniformly across the face of the screen.” 
2 Refer to conditions 6.4 and 6.7 of Incidental Take Permit No. 2081-2009-006-01 issued by the California 
Department of Fish and Game. 



 
Goal of Hydraulic Evaluation  
Goals of fish screen hydraulic evaluations are typically 1) to measure near screen water 
velocities under a near worst case scenario of diversion rate and river flows expected to 
be encountered throughout the life of the facility; and 2) to adjust flow control baffles to 
distribute flow uniformly over the entire screen surface.  Give the atypical use of the cone 
screen technology at the interim pumping plant, there was a third goal to this evaluation: 
to determine whether or not the cone screens could be operated in conformance with the 
State and federal fish screening criteria. 
 
Methods  
A SonTek 16 MHz Acoustic Doppler Velocimeter (ADV) was used to measure near-
screen velocities in three dimensions: X, Y, and Z.  The ADV was positioned such that 
approach velocity was measured directly by the X component of the probe.  Sweeping 
velocities were calculated as the resultant of Y and Z measured values.  Raw data for 
each location were stored in separate files and processed with WinADV, a program 
developed by the U.S. Bureau of Reclamation.  Point-average velocities were processed 
with Microsoft Excel to produce charts and graphs. 
    
Data were collected on four occasions over a two week period as shown in Table 1. A 
shallow draft, aluminum boat owned and operated by USFWS was used to provide safe 
access to the screens.  The boat was tied up to structural piles typically within four feet of 
the top of each screen unit.  This distance was thought to provide sufficient buffer against 
interference with screen velocities.  
 
 
Table 1. Pumping plant and river data. 

Screen # 
Date 

Tested 
Pump HP

Pump 
Pair 

Recorded  
Paired Pumping 

Rate  (cfs) 

River Stage
at RBDD 

1 June 9 300 1 & 2 81.6 239.52 
2 June 9 300 1 & 2 81.6 239.52 
3 June 9 300 3 & 4 72.7 239.52 
4 June 11 300 3 & 4 72.8 239.47 
5 June 11 300 5 & 6 77.5 239.47 
6 June 11 350 5 & 6 76.6 239.47 
7 June 8 400 7 & 8 77.5 239.64 
8 June 8 400 7 & 8 77.5 239.64 
9 June 11 400 9 & 10 73.0 239.47 
10 June 1 300 9 & 10 68.0 239.39 

 
 
Screen area was divided into forty eight zones in an array of six depths and eight 
positions (bearings) around each screen unit (Figure 3).  Velocity measurements were 
taken at or near the center of each zone. Positions for each measurement along each 
bearing and screen area for each zone are shown in Figure 4.  ISI manufactured a jig to 



position the probe that attached to the screens’ cleaning systems (Figure 2, Photo 1).  By 
operating the cleaning system and adjusting the jig the ADV could measure near-screen 
velocities three inches from the screen face at nearly any point on the screen. The probe 
size prevented measuring velocities within the top two feet on each screen. (Photo 2) 
Velocity measurements were recorded at a rate of 25Hz for a minimum of 60 seconds.    
 
The original plan called for measuring velocities on all screens under two conditions: 1) 
with both paired pumps running; and 2) with only one paired pump running.  Because 
two pumps fed each 36 inch conveyance line, the evaluation team theorized that each 
pump’s capacity would vary depending on whether or not the paired pump was also 
operating.  Due to time constraints and Tehama Colusa Canal Authority’s water needs, 
measurements were taken with both pumps operating for all screens except for Screen 
#10.  Initially, both Pumps 9 and 10 were operating, but only three points were measured 
when Pump #9 was shut down for the remainder of that test.   
 
 
Results and Analysis  
Plots of approach velocity and sweeping velocity data are shown in Appendixes A and B, 
respectively. Approach velocity data are also presented graphically overlaid on a plan 
view of the pumping plant in Appendix C.   
 
Approach velocities on Screens 6 – 10 did not exceed 0.45 fps, but only on Screen 8 were 
approach velocities well distributed over screen all screen area.  That said, overall 
average approach velocities on Screens 7 and 8 were well below the value expected for 
the measured diversion rate.   
 
Approach velocity distribution on screen numbers 1 – 5 were heavily influenced by the 
river current.  Approach velocities in areas receiving direct impact of the current (i.e. the 
upstream surface of the screens) far exceeded the design target value. Velocity data 
indicate water will pass through the porous cones, entering the upstream side and exiting 
the downstream side.  
 
The steel plate on the upstream side of Screen #1 successfully reduced flow through what 
would likely otherwise had been the hottest spot on all screens.  Approach velocity 
measurements at bearing 270 degrees were taken directly over the solid plate and ranged 
from 0.30 to 0.48 fps, despite having a solid barrier three inches away.  Approach 
velocities to either side of the barrier plate at bearings 225 and 315 ranged from 0.07 to 
0.62 and 1.37 to 1.90 fps, respectively.   
 
Sweeping velocities varied over a wide range depending on location.  On Screen 1, 
sweeping velocities were 3 – 4 fps on the leading edge, 6 – nearly 14 fps on either side, 
and approaching 0 fps on the downstream side.  Sweeping velocity patterns were similar 
on Screens 2 and 3, but to a lesser magnitude.  All screens had at least one point where 
sweeping velocity was essentially zero. 
 



Conclusions  
Screens located in the main river current (Screens 1 – 3) had hot spots exceeding 1.0 fps, 
speeds that could present a serious hazard to juvenile salmonids and sturgeon, as well as 
other fish. Screens 4 and 5 also had hot spots in patterns similar to those on Screens 1 – 3, 
although to a lesser magnitude.   
 
The overall average approach velocity on Screen #1 was less than zero, indicating more 
water was exiting the screen than entering it.  This clearly was not the case since the 
pump was operating at the time of the evaluation.  The negative average value was likely 
the result of a too coarse mesh of measurement points for diversion rate calculations 
purposes.  Additional measurement points on screens with large ranges in approach 
velocity values will improve diversion rate estimates. 
 
The overall average approach velocity values for Screens 7 and 8 were lower than what 
would have been expected given the measured pumping rate. These data imply the in line 
flow meter was faulty or there were problems with measuring the approach velocities for 
these screens.  If the actual diversion rate was less than what was measured, approach 
velocities will be greater and flow distribution may not be as uniform at the full diversion 
rate than they were when measured during this evaluation. 
 
Only on Screen 8 were approach velocities relatively uniform over all screen area.  
Adjusting the flow control baffles on Screens 6 – 10 may be appropriate to increase the 
uniformity of flow distribution over the entire screen surface of those screens.  
 
Adjusting the existing baffles will not likely have much effect on water passing directly 
through screen units 1 – 5.  A completely different baffle system which 
compartmentalizes screen sections, preventing flow from passing in one side and out the 
other, would greatly improve approach velocity distribution on screens located in an 
active current (i.e. Screens 1 – 5). 
 
Sweeping velocity criteria were not always met, especially in the backwater area of 
Screens 6 – 10.  When sweeping velocities are very low screen hot spots accumulate 
debris and present a greater hazard of impingement than a screen with greater sweeping 
velocities.  In areas where sweeping velocities are very low manual debris removal is 
important to maintain satisfactory hydraulic conditions. 
 
For most measurement locations, sweeping velocities exceeded approach velocities, in 
many cases by an order of magnitude or more.  At those locations, fish coming in contact 
with the screen face will likely have sufficient velocity to be deflected off the screen and 
continue with the prevailing current.  In areas where sweeping velocity is low, a screen 
with hot spots may lead to fish impingement (injury and/or mortality).    Turbulence in 
the vicinity of Screens 1 – 4 may disorient juvenile fish allowing predator species to lie in 
wait in calmer waters for feeding opportunities.   
 

 
 



 

 
 
Figure 1. Layout of pumps and screens at the interim pumping plant.  Screens and pumps were 
numbered 1 through 10, left to right. 
 
 
 

 
Figure 2.  Diagram of equipment used for measuring velocities on cone screens.  The jig arm could be 
raised or lowered to the appropriate elevation on the screen.  The jig was attached to the rotating 
brush system for positioning the velocity probe around the circumference of the screen. 
 
 



 
Figure 3. Plan view of locations for velocity measurements on each cone screen: six positions along 
each of eight bearing angles for a total of 48 measurement locations.   The point naming convention 
used included the bearing angle (with “0” being closest to the pump column), and distance from the 
toe of the screen (0.5, 1, 2, 3, 4, 5) as shown in Figure 4.   
 
 

 
Figure 4. Partial section of a cone screen showing locations where water velocities were measured 
(arrows, distance values in feet) and the screen zone area associated with those measurements 
(square feet of screen area per zone).  (Zones not shown to scale.) 
 
 
 
 
 



  
Photo 1.  Mounting the velocity probe and positioning jig to the screen’s cleaning 
system. 
 
 

 
Photo 2.  ADV probe in its highest position on the screen measured velocities two 
feet below the top of the screen panel. 
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Approach Velocity Plots 
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Approach Velocity (fps), Screen #2
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Approach Velocity (fps), Screen #3
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Approach Velocity (fps), Screen #4
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Approach Velocity (fps), Screen #5
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Approach Velocity (fps), Screen #6
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Approach Velocity (fps), Screen #7
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Approach Velocity (fps), Screen #8
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Approach Velocity (fps), Screen #9
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Approach Velocity (fps), Screen #10
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Sweeping Velocity Plots 
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direction of flow is not indicated. 
Values closer to the center 
have lower values.
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Note in this example, flow at 3 ft 
above the toe of the screen at bearing
90 degrees is stagnant (or moving 
into the screen). Sweeping velocity
near the surface at bearing 225 degrees
is greater than 2.5 fps.
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Appendix C 
 

Color Coded Approach Velocity Graphic 
 
 

 
 
 
Approach velocity data are shown graphically overlaid on a plan view of the pumping 
plant.  Areas of approach velocity greater than 0.5 feet per second (fps) are colored red.  
Areas with water exiting the screen, i.e. with negative approach velocities, are colored 
blue.  Areas with approach velocity values between 0.0 fps and 0.5 fps are colored green.  
The design approach velocity criterion for this project was 0.33 fps.   
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Comparison of spawning habitat predictions of PHABSIM
and River2D models∗
MARK GARD, U.S. Fish and Wildlife Service, 2800 Cottage Way, Room W-2605, Sacramento, CA 95825 USA.
E-mail: mark_gard@fws.gov

ABSTRACT
This study compared the predictions of two instream flow habitat models, the Physical Habitat Simulation System (PHABSIM) and River2D, with
regards to spawning habitat for chinook salmon, Oncorhynchus tschawytscha, and steelhead trout, Oncorhynchus mykiss. Spawning habitat was
simulated with both models for eight sites in the Sacramento River, five sites in the American River and one site in the Merced River, California, using
habitat suitability criteria developed from data collected on redds in each of these rivers. For four out of five cases, both models correctly predicted that
the combined suitability, calculated as the product of the depth, velocity and substrate suitabilities, of occupied locations was significantly greater than
the combined suitability of unoccupied locations. There was little difference in the flow-habitat relationships for each site and set of habitat suitability
criteria predicted by the two models. The use of River2D, rather than PHABSIM, is still warranted given its ability to model complex flow conditions
which cannot be simulated with PHABSIM.

Keywords: Instream Flow Incremental Methodology; IFIM; chinook salmon (Oncorhynchus tschawytscha); Physical Habitat
Simulation system; PHABSIM; Two-dimensional habitat modeling.

1 Introduction

By applying life stage specific habitat suitability criteria for
depth, velocity, substrate and cover, the Physical Habitat Sim-
ulation system (PHABSIM) predicts depth and velocity across
channel transects and combines these predictions with substrate
or cover data into a habitat index known as weighted useable
area (WUA) (Bovee, 1982; Milhous et al., 1989). The WUA
output is generally simulated for river reaches over a range of
stream flows. Alternatively, two-dimensional (2-D) hydraulic and
habitat models can be used to predict depth and velocity lat-
erally and longitudinally throughout a length of river channel
at a range of stream flows, and combine them with substrate
or cover to predict the WUA for the site. Two-dimensional
models have been suggested as a improvement and replace-
ment for PHABSIM (Ghanem et al., 1996; Leclerc et al.,
1995).

There are a number of potential advantages of using a 2-D
model, versus PHABSIM. The use of a 2-D model avoids prob-
lems of where to place transects within a mesohabitat unit
(Williams, 1996), since all of the mesohabitat unit is modeled
with a 2-D model. Two-dimensional models have the poten-
tial to model depths and velocities in complex channels over a
range of flows more accurately than PHABSIM because they
take into account local bed topography and roughness, and

∗This paper was prepared under the auspices of the U.S. Government and is therefore not subject to copywrite.
Received on March 22, 2007. Accepted on May 19, 2008.
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explicitly use mechanistic processes (conservation of mass and
momentum), rather than the reduced Manning’s formulation and
an empirical velocity adjustment factor (Leclerc et al., 1995).
Two-dimensional models can explicitly handle complex habitats,
including transverse flows, across-channel variation in water sur-
face elevations, and flow contractions/expansions, which cannot
be modeled explicitly with PHABSIM (Ghanem et al., 1996).
Two-dimensional models can perform better than PHABSIM at
representing patchy microhabitat features, such as gravel patches.
The data can be collected with a stratified sampling scheme,
with higher intensity sampling in areas with more complex or
more quickly varying microhabitat features, and lower intensity
sampling in areas with uniformly varying bed topography and
uniform substrate. Bed topography and substrate mapping data
can be collected at a very low flow, with the only data needed
at high flow being discharge and water surface elevations at the
top and bottom of the site and randomly sampled velocities for
validation purposes.

In this paper, we evaluate whether the two-dimensional
model used, River2D, (Steffler and Blackburn, 2001) is better
than PHABSIM at predicting chinook salmon (Oncorhynchus
tschawytscha) spawning habitat, and whether there are differ-
ences between PHABSIM and River2D in flow-habitat relation-
ships for chinook salmon and steelhead (Oncorhynchus mykiss)
spawning.
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Figure 1 Location of the Sacramento, Merced and American Rivers,
California. Shaded areas are the study reaches used to compare the
spawning habitat predictions of the PHABSIM and River2D models.

2 Study sites

The Merced, American and Sacramento Rivers, located in the
Central Valley of California, have a mean annual flow of 18.7,
106 and 275.8 m3/s, respectively. This study was conducted in a
16-km reach of the Merced River, a 9-km reach of the American
River, and a 47-km reach of the Sacramento River (Figure 1).
PHABSIM and River2D were used to model one site on the
Merced River, five sites on the American River and eight sites on
the Sacramento River (Table 1). Three of the Sacramento River
sites, located upstream of the Anderson-Cottonwood Irrigation
District (ACID) Dam, were modeled for two conditions, with
boards in or out at the ACID Dam. Stage at the sites was as much
as 2 m higher with the boards in at the ACID, versus with the
boards out.

3 Methods

3.1 Field measurements

To model spawning habitat in the study sites, depth, velocity
and substrate data were collected on 34 PHABSIM transects in
the Sacramento River, 27 PHABSIM transects in the American
River, and 6 PHABSIM transects in the Merced River, and sub-
strate and bed topography data were collected for 2-dimensional

Table 1 Characteristics of study sites. Three of the Sacramento River
sites were modeled for two conditions – with boards in and out at the
Anderson-Cottonwood Irrigation District (ACID) Dam. Stage at the
study sites was up to 2 m higher with the ACID Dam boards in, versus
with the boards out. The Merced site was simulated for 11 flows, one
of the American River sites (El Manto) was simulated for 35 flows,
and the Sacramento sites and the rest of the American River sites were
simulated for 30 flows. The lower end of the simulated flow range for
the El Manto site was 14.2 m3/s.

River Number of Number of Length of Range of
sites transects/ site (channel simulated

site widths) flows (m3/s)

Sacramento 8 1–10 0.33–1.88 92.0–877.8
American 5 2–7 2.43–10.43 28.3–311.5
Merced 1 6 2.03 5.7–19.8

hydraulic and habitat models for all 14 sites. For the PHABSIM
transects, lateral cell boundaries were established systematically
or where depth, velocity or substrate changed. Dominant sub-
strate was visually assessed as the 2.5 to 5.0 cm size range of
particles which comprised more than fifty percent of the sur-
face area. For example, if more than fifty percent of the area
was comprised of 5.0 to 10.0 cm particle sizes, the dominant
substrate was classified as 5.0 to 10.0 cm. The midpoint of the
dominant substrate size range would be an approximation of the
D50 particle size. The substrate size classes used are shown in
Figures 2 to 5. Depth, velocity and substrate data were collected
in October 1996 at a flow of 11.95 m3/s for the Merced River
PHABSIM transects, in July to December 1998 at flows of 84.4
to 114.2 m3/s for the American River PHABSIM transects, and
in June to September 1997 at flows of 216.0 to 427.5 m3/s for
the Sacramento River PHABSIM transects. Water surface eleva-
tions and, for the Merced River, flows were measured at four to
six flows for each PHABSIM transect. These flows ranged from
2.21 to 29.6 m3/s for the Merced River during August to Octo-
ber 1996 (Gallagher and Gard, 1999), from 29.4 to 316.4 m3/s
for the American River during April to December 1998, and
from 128.6 to 1192.5 m3/s for the Sacramento River during May
1997 to March 1999 (Gard and Ballard, 2003). Flows for the
American and Sacramento Rivers were determined from gage
readings.

The downstream-most and upstream-most PHABSIM tran-
sects were used for, respectively, the bottom and top of each
River2D site. The remaining PHABSIM transects were used to
establish a portion of the bed topography and substrate distribu-
tion of each River2D site. Data to develop the rest of the bed
topography and substrate distribution of the River2D sites were
collected with a total station for all of the Merced River site
and the dry and shallow portions of the American and Sacra-
mento River sites, generally in sets of points going across the
channel. Data for the bed topography and substrate distribution
of the deep (greater than 1 m depth) portions of the American
and Sacramento River sites were collected with an Acoustic
Doppler Current Profiler (ADCP) and underwater video (Gard
and Ballard, 2003). The average density of points from all
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sources (PHABSIM transects, ADCP and total station) used to
develop the bed topography for the River2D model was 2.65
points/100 m2 (Table 2). The stage-discharge relationship for
the downstream-most PHABSIM transect and the flows at the
upstream boundary were used as inputs to the River2D model
of each site, while the water surface elevation measured at the
highest flow at the remaining PHABSIM transects were used
to calibrate the River2D model of each site by adjusting the bed
roughnesses of the site until the water surface elevations predicted
by River2D matched the measured water surface elevations.

To develop chinook salmon spawning habitat suitability crite-
ria, depth, velocity and substrate data were collected on fall-run

(a)

(b)
Figure 2 Sacramento River fall-run chinook salmon Habitat Suitability Criteria (HSC) curves.

chinook salmon redds in the Merced, American and Sacramento
Rivers and on late-fall-run and winter-run chinook salmon redds
in the Sacramento River (Table 3). The methods used to collect
habitat suitability criteria for the Merced and American Rivers
are given in Gard (1998), while the methods used to collect habi-
tat suitability criteria for the Sacramento River are given in Gard
and Ballard (2003). Horizontal surveying was used to determine
the location of redds in the Merced River site in 1996 and in
two of the American River sites on December 14–17, 1998, and
a Global Positioning System (GPS) receiver was used to deter-
mine the location of redds in all of the Sacramento River sites
(occupied n values in Tables 4 and 5).
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(c)
Figure 2 (Continued)

(a)
Figure 3 Sacramento River late-fall-run chinook salmon Habitat Suitability Criteria (HSC) curves.

3.2 Habitat modeling

Average water column velocities, water surface elevations,
riverbed elevations, cell substrate categories, and site discharges
were entered into PHABSIM to create hydraulic models for each
transect. PHABSIM hydraulic data were calibrated following
procedures in Milhous et al. (1989). These procedures involve the
development of stage-discharge relationships using three possible
techniques: a log-log linear rating curve, Manning’s equation, or

a step-backwater method. The calibrated files for each site were
used in PHABSIM to simulate hydraulic characteristics for the
range of flows in Table 1, and for the average flows each year
from the beginning of spawning through the end of redd data
collection (Table 6).

The River2D model solves the two-dimensional, depth aver-
aged St. Venant equations expressed in conservative form
(Steffler and Blackburn, 2002). The River2D model uses a finite
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(b)

(c)
Figure 3 (Continued)

element numerical method based on the Streamline Upwind
Petrov-Galerkin weighted residual formulation, using a New-
ton Raphson iterative method (Steffler and Blackburn, 2002).
The River2D model achieves turbulence closure through the use
of a Boussinesq type eddy viscosity formulation (Steffler and
Blackburn, 2002). The basis for the current form of RIVER2D is
given in Ghanem et al. (1995).

Bed topography, bed roughness and substrate distribution data
were entered into River2D to create hydraulic models for each
site. To minimize the effects of inflow boundary condition spec-
ifications, a one-channel-width upstream artificial extension was
added to each site by translating the cross-sectional topography
at the top of the site upstream parallel to the top PHABSIM tran-
sect, with a bedslope equal to the water surface elevation slope
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(a)

(b)
Figure 4 Sacramento River winter-run chinook salmon Habitat Suitability Criteria (HSC) curves.

at the top of the site. The River2D model distributes flow across
the inflow boundary proportional to depth, resulting in the fastest
velocity being at the thalweg. The River2D model used a trian-
gular irregular network (TIN) grid, with grid elements ranging
in size from 13 m in areas with uniform topography to 0.7 m in
areas with rapidly varying topography (Figure 6). The grid ele-
ment sizes were selected to minimize the elevation error between
the TIN and the underlying bed topography data, while taking
into account computational limitations of large numbers of grid
elements. The number of grid elements, from site to site, ranged

from 5,475 to 24,488. River2D hydraulic data were calibrated
by adjusting bed roughnesses until simulated water surface ele-
vations matched measured water surface elevations. The initial
values of bed roughness for the River2D model were set equal
to five times the midpoint of the substrate range, i.e. a substrate
range of 5 to 10 cm would have an initial bed roughness of 0.4 m
(7.5 cm × 5). Five times the average particle size is approximately
the same as 2 to 3 times the d85 particle size, which is recom-
mended as an estimate of bed roughness height (Yalin 1977). The
bed roughnesses were adjusted by applying a fixed multiplier
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(c)
Figure 4 (Continued)

(a)
Figure 5 Steelhead Habitat Suitability Criteria (HSC) curves used to simulate steelhead spawning habitat in the Sacramento and Lower American
Rivers.

to all of the bed roughnesses. The values of all other River2D
hydraulic parameters were left at their default values (upwind-
ing coefficient = 0.5, minimum groundwater depth = 0.1 m,
groundwater transmissivity = 0.1 m2/s, groundwater storativ-
ity = 1, and eddy viscosity parameters epsilon1 = 0.01 m2/s,
epsilon2 = 0.5 m2/s and epsilon3 = 0.1 m2/s). The upwinding
coefficient is used in River2D’s Petrov-Galerkin finite element
scheme, the groundwater parameters are used for River2D’s wet-
ting/drying algorithm, and the eddy viscosity parameters are used

in River2D’s transverse shear model (Steffler and Blackburn,
2002). The calibrated files for each site were used in River2D
to simulate hydraulic characteristics for the range of flows in
Table 1, and for the average flows each year from the beginning
of spawning through to the end of redd data collection (Table 6).

Habitat suitability curves (HSC) are used in PHABSIM and
River2D to translate hydraulic and structural elements of rivers
into indices of habitat quality called combined suitability indices
(CSI), calculated as the product of the depth, velocity and
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(b)

(c)
Figure 5 (Continued)

Table 2 Study site data collection. There is only one value for the
range of point densities for the Merced River since there was only one
study site on that river.

River Range of point Number of points
densities (points/100 m2) per reach

Sacramento 0.90–4.16 4717

American 1.03–1.24 4784

Merced 3.41 367

substrate suitabilities. The habitat suitability criteria data for the
Merced and Lower American Rivers in Table 3 were used to
develop HSC for fall-run chinook salmon in the Merced and
Lower American Rivers (Gard, 1998). The habitat suitability
criteria data in Table 3 for the Sacramento River were used
to develop HSC for fall-run, late-fall-run and winter-run chi-
nook salmon in the Sacramento River (Figures 2 to 4) using
the techniques in Gard (1998). Habitat suitability criteria for
steelhead (Figure 5) were developed from depth and velocity
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Table 3 Habitat suitability criteria data collected as part of this study.
Flows are the range of flows during data collection. Spawning criteria for
late-fall chinook salmon were developed using the data from this study
and data collected on 79 redds by the California Department of Fish
and Game on Jan 1–Mar 3 1986–1988 at flows of 89.2 to 162.8 m3/s.

River Race Number Data collection Flow (m3/s)
of Redds dates

Sacramento Fall-run 437 Oct 23–Nov 25 130.4–176.8
1995–1999

Sacramento Late-fall-run 77 Feb 27–Mar 29 90.2–117.0
2001

Sacramento Winter-run 227 May 26–Jul 15 297.2–563.8
1996–2001

American Fall-run 218 Nov 6–7 1996 78.6
Merced Fall-run 186 Nov 12–14 7.79

1996

Table 4 Results of Mann-Whitney U Tests for PHABSIM occupied versus unoccupied cells.

River Race Occupied n Unoccupied n Occupied median Unoccupied median p-value

Merced Fall 28 221 0.10 0.00 0.011
American Fall 103 497 0.23 0.01 0.003
Sacramento Fall 71 3081 0.31 0.01 < 0.000001
Sacramento Late-fall 22 1906 0.26 0.17 0.16
Sacramento Winter 51 6164 0.29 0.00 < 0.000001

Table 5 Results of Mann-Whitney U Tests for 2-D model occupied versus unoccupied locations.

River Race Occupied n Unoccupied n Occupied median Unoccupied median p-value

Merced Fall 33 220 0.54 0.27 0.001
American Fall 184 458 0.04 0.00 0.000003
Sacramento Fall 74 3080 0.11 0.03 0.000026
Sacramento Late-fall 16 1906 0.07 0.14 0.313
Sacramento Winter 58 6164 0.14 0.01 0.000062

Table 6 Time period and average chinook salmon spawning river discharge (m3/s) for the Merced, Lower American
and Sacramento Rivers. Data are only given for years in which redd locations were recorded for study sites. The range
of flows for the Sacramento River sites reflects the different flows present at different sites due to tributary inflow
within the reach and differences from site to site in the final date of redd data collection.

Race 1996 1997 1998 1999 2000 2001

Merced Fall
Time period 10/23–11/14
Average 8.4

American Fall
Time period 11/11–12/17
Average 87.4

Sacramento Fall
Time period 10/9–11/20 10/7–11/4
Average 127.9–130.3 173.3–177.8

Sacramento Late-
Time period fall 1/6–3/29
Average 108.1–117.0

Sacramento Winter
Time period 5/15–6/23 4/15–7/14 4/15–7/10 4/15–6/21
Average 445.4–469.4 288.6–308.5 308.1–324.0 281.2

data collected on steelhead redds in the Lower American River
by the California Department of Fish and Game and substrate
data collected on steelhead redds in the Trinity River by the
U.S. Fish and Wildlife Service using the methods in Gard
(1998).

The calibrated PHABSIM and River2D hydraulic simulations
were used with the above HSC to generate flow-habitat relation-
ships for fall-run chinook salmon spawning in the Sacramento,
American and Merced River sites, for steelhead spawning in the
Sacramento and American River sites, and for late-fall-run and
winter-run chinook salmon spawning in the Sacramento River
sites. The calibrated PHABSIM hydraulic simulations for the
flows in Table 6 were used with the chinook salmon HSC to cal-
culate the CSI values predicted by PHABSIM for occupied (cells
with redds) and unoccupied cells for each site and year where redd
locations were determined. For unoccupied cells, all wetted cells
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Figure 6 Example of triangular irregular element mesh used to perform the two-dimensional hydraulic modeling of the American River.

were used. Similarly, the calibrated River2D simulations for the
flows in Table 6 were used with the same chinook salmon HSC to
calculate the CSI values predicted by River2D for occupied and
unoccupied locations for each site and year where redd locations
were determined. Unoccupied locations were randomly selected
which met the following criteria: they were farther than one m
from an occupied location, and they were wetted. The number of
unoccupied River2D locations (Table 5) was chosen to be simi-
lar to the number of unoccupied PHABSIM cells (Table 4). The
number of occupied River2D locations (Table 5) differs from the
number of occupied PHABSIM cells (Table 4) for the following
reasons: 1) some PHABSIM cells contained more than one redd,
while each occupied River2D location only contained one redd;
2) some portions of the River2D sites were not represented by
any of the PHABSIM transects; and 3) redds located upstream of
the uppermost PHABSIM transect, but within the portion of the
channel represented by the uppermost PHABSIM transect, would
be located within PHABSIM cells but would be upstream of the
River2D site. Model type (River2D versus PHABSIM) came into
the analysis of CSI because the analysis used the CSI calculated
by the two models based on the depths, velocities and substrates
predicted by each model at the redd locations, rather than the CSI
that could be calculated from the measured depths, velocities and
substrates. The River2D model calculates CSI using the depths
and velocities from the hydraulic simulation, substrate data from
a channel index file, and the HSC. The key differences between
the models tested in this paper are that PHABSIM is a one-
dimensional model that simulates velocities using Manning’s n

values, while River2D is a two-dimensional model that simulates
velocities using conservation of mass and momentum. During the
habitat calculations, substrate is assigned to each River2D node
based on the nearest substrate datapoint in the channel index file
(either longitudinally or laterally), while PHABSIM, with longi-
tudinal cells, assigns substrate values based on the nearest vertical
longitudinally.

3.3 Data analysis

Mann-Whitney U tests (Wilkinson, 1990) were used to deter-
mine for each river, and, in the case of the Sacramento River,

for each race of chinook salmon, if there was a significant dif-
ference in the CSI predicted by PHABSIM for occupied versus
unoccupied cells, and if there was a significant difference in the
CSI predicted by River2D for occupied versus unoccupied loca-
tions. This test is analagous to the transferability test described
by Thomas and Bovee (1993). Kolmogorov-Smirnov tests (Steel
and Torrie, 1980) were performed for each site for each set of
suitability criteria to detemine if there was a significant difference
between the PHABSIM and River2D flow-habitat relationships.
Separate Kolmogorov-Smirnov tests were performed for the three
Sacramento River sites upstream of the ACID dam for the two
conditions simulated (boards in or out at the ACID Dam). As
a result, there were a total of 55 Kolmogorov-Smirnov tests
([3 Sacramento River sites above ACID Dam × 2 conditions + 5
Sacramento River sites below ACID Dam] × 4 HSC sets + 5
American River sites × 2 HSC sets + 1 Merced River site × 1
HSC set).

4 Results

Velocity validation statistics of the River2D hydraulic model are
given in Table 7, while a graphical example of the validation
results are shown in Figure 7. Typical results of the River2D habi-
tat model are shown in Figure 8. The CSI of occupied locations
predicted by both PHABSIM (Table 4) and River2D (Table 5)
was significantly greater than the CSI of unoccupied locations at
p = 0.05 (Mann-Whitney U test) for fall-run chinook salmon
spawning for all three rivers and for winter-run chinook salmon
spawning in the Sacramento River. However, the CSI of occu-
pied locations predicted by both PHABSIM and River2D were
not significantly different from the CSI of unoccupied locations at
p = 0.05 (Mann-Whitney U test) for late-fall-run chinook salmon
spawning in the Sacramento River. The number of occupied cells
and locations for late-fall-run (Tables 4 and 5) was lower than
for the other Mann-Whitney U tests. The median CSI predicted
for redd locations by River2D was greater than that predicted by
PHABSIM for the Merced River, but was less for the American
and Sacramento Rivers (Tables 4 and 5). The percentage of occu-
pied locations where River2D predicted a CSI of 0 was less than
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Table 7 River2D hydraulic modeling validation results. The errors
were calculated as the absolute value of the difference between the
measured and simulated velocities.

River Site Mean error Mean error
number (m/s) for velocities (%) for velocities

< 0.91 m/s > 0.91 m/s

Sacramento 1 0.31 24%
Sacramento 2 0.17 17%
Sacramento 3 0.14 16%
Sacramento 4 0.52 30%
Sacramento 5 0.29 15%
Sacramento 6 0.22 13%
Sacramento 7 0.48 13%
Sacramento 8 0.34 20%
American 1 0.63 38%
American 2 0.25 27%
American 3 0.27 17%
American 4 0.35 24%
American 5 0.31 22%
Merced 1 0.17 26%

the percentage of occupied cells where PHABSIM predicted a
CSI of 0 for fall-run chinook salmon spawning in all three rivers,
but was greater for late-fall-run and winter-run chinook salmon
spawning (Tables 7 and 8). For both PHABSIM and River2D, a
substrate which was too large or small was the cause of most of
the occupied locations which were predicted to have a CSI of 0
(Tables 7 and 8).

Figure 7 Example of River2D validation for one of the transects of the American River site illustrated in Figure 6 at a flow of 88.2 m3/s.

The Kolomogorov-Smirnov D statistics for the comparisons
of PHABSIM and River2D flowhabitat relationships (Figure 9)
ranged from 0.007 (Figure 10C) to 0.41 (Figure 10A), with
a median value of 0.07 (Figure 10B). Only one PHABSIM
flow-habitat relationship (Figure 10A) was significantly differ-
ent from the River2D flow habitat relationship at p = 0.05. Even
though the differences between the PHABSIM and River2D flow
habitat relationships were almost allways not statistically sig-
nificantly different, differences in the flow habitat relationships
between the two model could result in different flow manage-
ment decisions. For example, a comparison with a relatively low
Kolomogorov-Smirnov D statistic of 0.03 (Figure 10D) has a
maximum amount of spawning habitat at 85.0 m3/s for PHAB-
SIM, versus at 118.9 m3/s with River2D, a 40 percent higher
flow.

5 Discussion

Errors in the habitat predictions for occupied locations for PHAB-
SIM can be due to longitudinal variation in depth, velocity and
substrate (Gallagher and Gard, 1999) or due to the velocity dis-
tribution across the channel changing with flow. Errors in the
habitat predictions for occupied locations for River2D can be
due to inadequate detail in mapping substrate distribution, insuf-
ficient data collected to correctly map the bed topography of the
site, or effects of the bed topography upstream of the study site
not being included in the model. For the Sacramento River sites,
a substantial proportion of the error for both the PHABSIM and
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Figure 8 Example of River2D output of CSI for fall-run chinook salmon spawning at a flow of 87.8 m3/s for the American River site illustrated in
Figure 6.

Table 8 Characteristics of occupied cells predicted by PHABSIM. The numbers in the last five columns are the number of
occupied cells that PHABSIM predicted having a CSI of 0 as a result of the cause given for that column. The percent of
occupied cells with a CSI of 0 is the total number of occupied cells with a CSI of 0 (incuding all of the causes in the last five
columns) divided by the total number of occupied cells (as given in Table 4).

River Race % Occupied cells Substrate too Dry Too Too Too
with CSI of 0 large or small shallow slow fast

Merced Fall 4% 1 0 0 0 0
American Fall 36% 24 7 1 0 5
Sacramento Fall 28% 16 4 0 0 0
Sacramento Late-Fall 18% 3 1 0 0 0
Sacramento Winter 22% 11 0 0 0 0

River2D models habitat predictions can be attributed to errors in
the GPS measurements of redd locations, rather than errors in
the habitat predictions of the models. The location of redds indi-
cated by the GPS measurement can be as much as 5 m from the
actual redd location (Gard and Ballard, 2003). In several cases,
the redd location indicated by the GPS measurement was up onto
the riverbank above water’s edge.

The ability of PHABSIM in this case to relatively accurately
predict the CSI of redd locations can be attributed to the num-
ber and spacing of transects, such that conditions at the transect
tended to be representative of the depths, velocities and substrates
present throughout the cells, and because flow at the sites chosen
is largely one-dimensional, with only limited two-dimensional
effects, such as transverse flows and across-channel variation
in water surface elevations. There is a balance in the predictive
accuracy of PHABSIM and River2D between the shapes of cells
and the velocity information provided to each model. River2D
will tend to be more accurate than PHABSIM because of the
smaller triangular elements used by River2D, compared to the
large rectagular cells used by PHABSIM. At least at flows close

to those at which velocity data were collected and at locations
close to the transect, PHABSIM will typically do a good job in
predicting velocities, since it calculates the Manning’s n value
for each cell from the measured depth and velocity, and then
calculates the simulated velocity from the Manning’s n value.
In contrast, River2D does not use any measured velocity data
to predict velocities. While the only way to improve the perfor-
mance of the PHABSIM habitat predictions would have been
to increase the number of transects, and thus decrease the lon-
gitudinal length of the cells, there are several techniques that
could have been used to improve the performance of the River2D
habitat predictions with the existing dataset. It appears based on
our substrate data that substrate varies more laterally than lon-
gitudinally. To test whether this supposition could be used to
improve the performance of River2D, a test channel index file
was created for the American River site in Figures 6 and 8 in
which longitudinal breaklines were added to force River2D to
predict substrate at a given location based on the nearest longi-
tudinal point where substrate data was collected. This decreased
the number of redds with predicted substrate suitability of zero
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Table 9 Characteristics of occupied locations predicted by River2D. The numbers in the last five columns
are the number of occupied locations that River2D predicted having a CSI of 0 as a result of the cause
given for that column. The percent of occupied locations with a CSI of 0 is the total number of occupied
locations with a CSI of 0 (incuding all of the causes in the last five columns) divided by the total number
of occupied locations (as given in Table 5).

River Race % Occupied cells Substrate too Dry Too Too Too
with CSI of 0 large or small shallow slow fast

Merced Fall 0% 0 0 0 0 0
American Fall 33% 52 5 0 1 3
Sacramento Fall 22% 13 1 1 0 1
Sacramento Late-fall 37% 6 0 0 0 0
Sacramento Winter 34% 13 0 4 3 0

Figure 9 Results of Kolmogorov-Smirnov tests of PHABSIM versus River2D flow-habitat relationships. One of 55 tests was significant at p = 0.05.

from 22 with the original channel index file (Figure 11A) to 13
with the test channel index file (Figure 11B). The distribution of
flow across the inflow boundary can have a substantial effect on
the velocities predicted by River2D, at least in the upper portions
of the sites. Accordingly, the performance of River2D could be
improved by having a bed topography at the inflow boundary
that is proportional to the measured distribution of velocities at
the top of the site, so that the thalweg at the inflow boundary
would be directly upstream of the highest velocity at the top of
the site. The performance of the River2D model could also have
been improved by collecting two additional types of data: the
bed topography in one channel-width upstream of the top of the
site, and mapping polygons of the substrate distribution. The
velocity simulation within the site would have been improved by
incorporating the actual bed topography upstream of the site into
the computational mesh, instead of using an artificial upstream

extension, as was done in this study. Since the substrate at a
given point is assigned based on the closest point where substrate
data was collected, River2D assumes that the substrate changes
half-way in between two sets of cross-sectional points. Mapping
substrate polygons would more accurately define where changes
in substrate occur, and thus improve the performance of River2D
with respect to substrate distribution.

The purpose of this study was to compare the habitat predic-
tions of PHABSIM and River2D, rather than to validate either
the HSC curves or the hydraulic modeling of PHABSIM and
River2D. The performance of PHABSIM and River2D in pre-
dicting the CSI of occupied locations should be viewed as a
combination of errors due to the predictive accuracy of the HSC
curves used and the accuracy of PHABSIM and River2D to pre-
dict the depth, velocity and substrate spatial distribution within
the sites. The combined errors were tested against fish data (redd
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(a)

(b)
Figure 10 Sample PHABSIM and River2D flow-habitat relationships. A. Lower Lake Redding (Sacramento River) site, ACID boards out, steelhead
spawning. Flow-habitat relationship with highest Kolmorogorov-Smirnov D statistic, p < 0.05. B. El Manto (American River) site, fall-run chinook
salmon spawning. Flow-habitat relationship with median Kolmorogorov-Smirnov D statistic, p > 0.05. C. Upper Lake Redding (Sacramento River)
site, ACID boards out, late-fall-run chinook salmon spawning. Flow-habitat relationship with lowest Kolmorogorov-Smirnov D statistic, p > 0.05.
D. Sailor Bar (American River) site, fall-run Chinook salmon spawning.

locations) across systems and flow levels. Since the same HSC
were used for PHABSIM and River2D, differences between the
two models in predicting the CSI of occupied locations is entirely
due to the ability of the two models to predict depths, velocities
and substrates, which are translated into CSI by the HSC. Within
the usual use of calibration, the only data used to calibrate the two
models were water surface elevations. The data used to develop
the HSC (Table 3) could also be viewed as calibration data. Since
the redd location data used to compare the habitat predictions of
PHABSIM and River2D for the Sacramento and Merced Rivers

were a subset of the data used to develop the HSC for these rivers,
these data can not properly be considered validation data. In con-
trast, the redd location data for the American River were not used
to develop the American River HSC, and thus the results of the
comparisons of the CSI predictions of PHABSIM and River2D
can be viewed as a validation of the combination of the Amer-
ican River HSC and the hydraulic modeling of PHABSIM and
River2D. The results for each model help to validate the hydraulic
modeling of the other, while the combined results of the two
models help to validate the HSC.
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(c)

(d)
Figure 10 (Continued)

There were several limitations of the tests used in this study.
The low number of occupied late-fall spawning locations (22 and
16 for, respectively PHABSIM and River2D) resulted in a low
power of the Mann-Whitney U test for this race. In this regard,
Thomas and Bovee (1993) found in the analagous transferabil-
ity test that the power of the test was significantly reduced if
the number of occupied locations was less than 45. Guay et al.
(2000) found a significant positive relationship between fish den-
sities and habitat quality indices, similar to our results that the
CSI predicted by River2D of occupied locations was greater
than for unoccupied locations for the remaining tests. The main
limitation of the comparison of the PHABSIM and River2D flow-
habitat relationships was that we were not able to compare the
flow-habitat relationships of PHABSIM and River2D for areas

which could not be modeled with PHABSIM. Similar to the
results of this study, Waddle et al., (2000) found mixed results in
PHABSIM and River2D’s abilities to predict velocities.

This study had mixed results on whether River2D is better
than PHABSIM at predicting spawning habitat, and found lit-
tle difference between PHABSIM and River2D in flow-habitat
relationships. However, with the refinements suggested above,
River2D has the potential to significantly outperform PHABSIM
at predicting spawning habitat. Probably the main advantage of
River2D is its ability to model conditions, such as transverse
flow, across-channel variations in water surface elevation, and
flow contractions/expansions, which cannot be modeled with
PHABSIM. If flow-habitat relationships for areas that cannot be
modeled with PHABSIM are significantly different from areas,
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(a)

(b)
Figure 11 Distribution of substrate predicted by River2D for the American River site in Figures 6 and 8. A. Distribution of substrate using the original
channel index file. B. Distribution of substrate using the test channel index file where substrate was determined based on the closest longitudinal
substrate datapoint.

such as those used in this study, which can be modeled with
PHABSIM, the choice of model would have an effect on instream
flow prescriptions.
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